IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Erlend Storvik, Carina Bringedal
{"title":"Sharp-interface limit of the Cahn–Hilliard–Biot equations","authors":"Erlend Storvik,&nbsp;Carina Bringedal","doi":"10.1016/j.aml.2025.109522","DOIUrl":null,"url":null,"abstract":"<div><div>In this letter, we derive the sharp-interface limit of the Cahn–Hilliard–Biot equations using formal matched asymptotic expansions. We find that in each sub-domain, the quasi-static Biot equations are obtained with domain-specific material parameters. Moreover, across the interface, material displacement and pore pressure are continuous, while volumetric fluid content and normal stress are balanced. By utilizing the energy of the system, the phase-field potential is shown to be influenced by the curvature, along with contributions from both flow and elasticity at the interface. The normal velocity of the interface is proportional to the jump in normal derivative of the phase-field potential across the interface. Finally, we present a numerical experiment that demonstrates how the location of each phase evolves consistently as the diffuse-interface width parameter becomes smaller; only the width of the diffuse interface changes.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"166 ","pages":"Article 109522"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965925000722","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们用形式匹配渐近展开式导出了Cahn-Hilliard-Biot方程的锐界面极限。我们发现在每个子域中,都得到了具有特定领域材料参数的准静态Biot方程。此外,在界面上,材料位移和孔隙压力是连续的,而体积流体含量和正应力是平衡的。通过利用系统的能量,相场势受到曲率的影响,同时也受到界面处流动和弹性的影响。界面的法向速度与界面上相场势的法向导数的跳变成正比。最后,我们提出了一个数值实验,证明了随着扩散界面宽度参数变小,每个相位的位置如何一致地演变;只有漫射界面的宽度改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp-interface limit of the Cahn–Hilliard–Biot equations
In this letter, we derive the sharp-interface limit of the Cahn–Hilliard–Biot equations using formal matched asymptotic expansions. We find that in each sub-domain, the quasi-static Biot equations are obtained with domain-specific material parameters. Moreover, across the interface, material displacement and pore pressure are continuous, while volumetric fluid content and normal stress are balanced. By utilizing the energy of the system, the phase-field potential is shown to be influenced by the curvature, along with contributions from both flow and elasticity at the interface. The normal velocity of the interface is proportional to the jump in normal derivative of the phase-field potential across the interface. Finally, we present a numerical experiment that demonstrates how the location of each phase evolves consistently as the diffuse-interface width parameter becomes smaller; only the width of the diffuse interface changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信