Chen Chen , Yaoyao Ying , Kaixuan Yang , Dandan Qi , Runtian Yu , Mingxiao Chen , Dong Liu
{"title":"氨的加入对1-丁烯热解中烟灰和前驱体形成的影响:从固体颗粒的角度看","authors":"Chen Chen , Yaoyao Ying , Kaixuan Yang , Dandan Qi , Runtian Yu , Mingxiao Chen , Dong Liu","doi":"10.1016/j.joei.2025.102063","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonia, a zero-carbon and hydrogen-rich fuel, has the potential to regulate the emission of soot particulates. In this work, soot nanostructure and related reactivity evolution in 1-butene/ammonia co-pyrolysis at various gas flow rates were investigated. Transmission electron microscopy and Raman spectroscopy were adopted to characterize soot morphology and its nanostructure, thermogravimetric analysis was used to evaluate soot reactivity, and X-ray photoelectron spectroscopy and elemental analysis were employed to investigate soot chemical composition. Results revealed that increasing gas flow rate and ammonia content both led to a decrease in primary particle diameter, whose fringe length was negatively correlated with the gas flow rate, while blending NH<sub>3</sub> had no obvious impact on structural parameters. Rising gas flow rate enhanced the soot oxidation reactivity by reducing its residence time in the high-temperature reaction region, where it did not undergo sufficient carbonization. The introduction of nitrogen-containing species depleted available carbon source for soot formation, and deactivated the reaction sites by binding with the defective carbon in the carbon layer, thus inhibiting the surface growth of soot. Nitrogen atoms embedded in the soot particles were predominantly found in the form of pyridines. The inhibitory effect of added ammonia on soot reactivity depended on adequate gas residence time. The coupling relationship of gaseous soot precursors and solid particles formation with ammonia addition has been further developed in conjunction with the previous work.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"120 ","pages":"Article 102063"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of ammonia addition on soot and precursors formation in 1-butene pyrolysis: View from solid particles\",\"authors\":\"Chen Chen , Yaoyao Ying , Kaixuan Yang , Dandan Qi , Runtian Yu , Mingxiao Chen , Dong Liu\",\"doi\":\"10.1016/j.joei.2025.102063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ammonia, a zero-carbon and hydrogen-rich fuel, has the potential to regulate the emission of soot particulates. In this work, soot nanostructure and related reactivity evolution in 1-butene/ammonia co-pyrolysis at various gas flow rates were investigated. Transmission electron microscopy and Raman spectroscopy were adopted to characterize soot morphology and its nanostructure, thermogravimetric analysis was used to evaluate soot reactivity, and X-ray photoelectron spectroscopy and elemental analysis were employed to investigate soot chemical composition. Results revealed that increasing gas flow rate and ammonia content both led to a decrease in primary particle diameter, whose fringe length was negatively correlated with the gas flow rate, while blending NH<sub>3</sub> had no obvious impact on structural parameters. Rising gas flow rate enhanced the soot oxidation reactivity by reducing its residence time in the high-temperature reaction region, where it did not undergo sufficient carbonization. The introduction of nitrogen-containing species depleted available carbon source for soot formation, and deactivated the reaction sites by binding with the defective carbon in the carbon layer, thus inhibiting the surface growth of soot. Nitrogen atoms embedded in the soot particles were predominantly found in the form of pyridines. The inhibitory effect of added ammonia on soot reactivity depended on adequate gas residence time. The coupling relationship of gaseous soot precursors and solid particles formation with ammonia addition has been further developed in conjunction with the previous work.</div></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":\"120 \",\"pages\":\"Article 102063\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967125000911\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967125000911","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Effects of ammonia addition on soot and precursors formation in 1-butene pyrolysis: View from solid particles
Ammonia, a zero-carbon and hydrogen-rich fuel, has the potential to regulate the emission of soot particulates. In this work, soot nanostructure and related reactivity evolution in 1-butene/ammonia co-pyrolysis at various gas flow rates were investigated. Transmission electron microscopy and Raman spectroscopy were adopted to characterize soot morphology and its nanostructure, thermogravimetric analysis was used to evaluate soot reactivity, and X-ray photoelectron spectroscopy and elemental analysis were employed to investigate soot chemical composition. Results revealed that increasing gas flow rate and ammonia content both led to a decrease in primary particle diameter, whose fringe length was negatively correlated with the gas flow rate, while blending NH3 had no obvious impact on structural parameters. Rising gas flow rate enhanced the soot oxidation reactivity by reducing its residence time in the high-temperature reaction region, where it did not undergo sufficient carbonization. The introduction of nitrogen-containing species depleted available carbon source for soot formation, and deactivated the reaction sites by binding with the defective carbon in the carbon layer, thus inhibiting the surface growth of soot. Nitrogen atoms embedded in the soot particles were predominantly found in the form of pyridines. The inhibitory effect of added ammonia on soot reactivity depended on adequate gas residence time. The coupling relationship of gaseous soot precursors and solid particles formation with ammonia addition has been further developed in conjunction with the previous work.
期刊介绍:
The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include:
Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies
Emissions and environmental pollution control; safety and hazards;
Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS;
Petroleum engineering and fuel quality, including storage and transport
Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling
Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems
Energy storage
The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.