Harekrishna Roy PhD , Balaji Maddiboyina PhD , Sisir Nandi PhD , Swati Srungarapati PhD , Bhabani Shankar Nayak PhD , Nirmala Jyothi Gade M Pharm , Tummala Lokeswari Naga Sai Anjana M Pharm , Kammula Mounika Vinayasri M Pharm , Asha Gummadi M Pharm , Shaik Haseena M Pharm
{"title":"通过纳米乳和吡哆醇补充增强利瓦斯汀的递送:阿尔茨海默病干预的体内研究","authors":"Harekrishna Roy PhD , Balaji Maddiboyina PhD , Sisir Nandi PhD , Swati Srungarapati PhD , Bhabani Shankar Nayak PhD , Nirmala Jyothi Gade M Pharm , Tummala Lokeswari Naga Sai Anjana M Pharm , Kammula Mounika Vinayasri M Pharm , Asha Gummadi M Pharm , Shaik Haseena M Pharm","doi":"10.1016/j.nano.2025.102810","DOIUrl":null,"url":null,"abstract":"<div><div>Nanoemulsions are nanostructured material and stabilized colloidal in nature evolved as a highly desirable mechanism for the delivery of drugs. Our objective of the study deals with a successful Rivastigmine (RSG) loaded nanoemulsion which can effectively progress the treatment of AD patients. We developed nanoemulsion containing RSG by combining pyridoxine, an essential vitamin supplement for central nervous system development, with linseed oil, which functioned as the lipophilic phase in the nanoemulsion formulation. The optimal formulation having globular size of 202.3 nm was further evaluated by various analytical techniques, including zeta potential analysis, ATR, DSC, and XRD study. The study utilized the Morris Water Maze (MWM) model to assess the cognitive abilities of Long-Evans rats. The current investigation establishes that the utilization of RSG nanoemulsion incorporating blend of linseed oil and pyridoxine which reduced travel distance in animal mode and can be successfully contribute to therapeutic advancements in patients with AD.</div></div>","PeriodicalId":19050,"journal":{"name":"Nanomedicine : nanotechnology, biology, and medicine","volume":"65 ","pages":"Article 102810"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced rivastigmine delivery through nanoemulsion and pyridoxine supplementation: An in-vivo study on Alzheimer's disease intervention\",\"authors\":\"Harekrishna Roy PhD , Balaji Maddiboyina PhD , Sisir Nandi PhD , Swati Srungarapati PhD , Bhabani Shankar Nayak PhD , Nirmala Jyothi Gade M Pharm , Tummala Lokeswari Naga Sai Anjana M Pharm , Kammula Mounika Vinayasri M Pharm , Asha Gummadi M Pharm , Shaik Haseena M Pharm\",\"doi\":\"10.1016/j.nano.2025.102810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanoemulsions are nanostructured material and stabilized colloidal in nature evolved as a highly desirable mechanism for the delivery of drugs. Our objective of the study deals with a successful Rivastigmine (RSG) loaded nanoemulsion which can effectively progress the treatment of AD patients. We developed nanoemulsion containing RSG by combining pyridoxine, an essential vitamin supplement for central nervous system development, with linseed oil, which functioned as the lipophilic phase in the nanoemulsion formulation. The optimal formulation having globular size of 202.3 nm was further evaluated by various analytical techniques, including zeta potential analysis, ATR, DSC, and XRD study. The study utilized the Morris Water Maze (MWM) model to assess the cognitive abilities of Long-Evans rats. The current investigation establishes that the utilization of RSG nanoemulsion incorporating blend of linseed oil and pyridoxine which reduced travel distance in animal mode and can be successfully contribute to therapeutic advancements in patients with AD.</div></div>\",\"PeriodicalId\":19050,\"journal\":{\"name\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"volume\":\"65 \",\"pages\":\"Article 102810\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomedicine : nanotechnology, biology, and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1549963425000103\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine : nanotechnology, biology, and medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963425000103","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
摘要
纳米乳液是一种纳米结构的材料,本质上是稳定的胶体,是一种非常理想的药物输送机制。我们的研究目标是成功制备一种负载利瓦斯汀(RSG)的纳米乳,该纳米乳可以有效地推进阿尔茨海默病患者的治疗。我们将中枢神经系统发育必需的维生素补充物吡哆醇与亲脂相的亚麻籽油结合,制成了含有RSG的纳米乳。通过zeta电位分析、ATR、DSC、XRD等分析手段对粒径为202.3 nm的最佳配方进行了进一步评价。本研究采用Morris水迷宫(Morris Water Maze, MWM)模型评价Long-Evans大鼠的认知能力。目前的研究表明,使用含有亚麻籽油和吡哆醇混合物的RSG纳米乳可以减少动物模式下的移动距离,并且可以成功地促进AD患者的治疗进展。
Enhanced rivastigmine delivery through nanoemulsion and pyridoxine supplementation: An in-vivo study on Alzheimer's disease intervention
Nanoemulsions are nanostructured material and stabilized colloidal in nature evolved as a highly desirable mechanism for the delivery of drugs. Our objective of the study deals with a successful Rivastigmine (RSG) loaded nanoemulsion which can effectively progress the treatment of AD patients. We developed nanoemulsion containing RSG by combining pyridoxine, an essential vitamin supplement for central nervous system development, with linseed oil, which functioned as the lipophilic phase in the nanoemulsion formulation. The optimal formulation having globular size of 202.3 nm was further evaluated by various analytical techniques, including zeta potential analysis, ATR, DSC, and XRD study. The study utilized the Morris Water Maze (MWM) model to assess the cognitive abilities of Long-Evans rats. The current investigation establishes that the utilization of RSG nanoemulsion incorporating blend of linseed oil and pyridoxine which reduced travel distance in animal mode and can be successfully contribute to therapeutic advancements in patients with AD.
期刊介绍:
The mission of Nanomedicine: Nanotechnology, Biology, and Medicine (Nanomedicine: NBM) is to promote the emerging interdisciplinary field of nanomedicine.
Nanomedicine: NBM is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.