对称性与布坎南-利洛猜想:解决混合反馈问题

IF 3.5 2区 数学 Q1 MATHEMATICS, APPLIED
Elena Braverman , John Ioannis Stavroulakis
{"title":"对称性与布坎南-利洛猜想:解决混合反馈问题","authors":"Elena Braverman ,&nbsp;John Ioannis Stavroulakis","doi":"10.1016/j.amc.2025.129376","DOIUrl":null,"url":null,"abstract":"<div><div>Buchanan and Lillo both conjectured that oscillatory solutions of the first-order delay differential equation with positive feedback <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>x</mi><mo>(</mo><mi>τ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span>, <span><math><mi>t</mi><mo>≥</mo><mn>0</mn></math></span>, where <span><math><mn>0</mn><mo>≤</mo><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>≤</mo><mn>1</mn></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>t</mi><mo>−</mo><mi>τ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>≤</mo><mn>2.75</mn><mo>+</mo><mi>ln</mi><mo>⁡</mo><mn>2</mn><mo>,</mo><mi>t</mi><mo>∈</mo><mi>R</mi></math></span>, are asymptotic to a shifted multiple of a unique periodic solution. This special solution can also be described from the more general perspective of the mixed feedback case (sign-changing <em>p</em>), thanks to its symmetry (antiperiodicity). The analogue of this conjecture for negative feedback, <span><math><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>≤</mo><mn>0</mn></math></span>, was resolved by Lillo, and the mixed feedback analog was recently set as an open problem. In this paper, we resolve the case of mixed feedback, obtaining results in support of the conjecture of Buchanan and Lillo, underlining its link to the symmetry of the periodic solution. In particular, we obtain and describe the optimal estimates on the necessary delay for existence of periodic (more generally, nonvanishing) solutions, with respect to the period (oscillation speed). These apply to almost any first-order delay system, as we consider the general nonautonomous case, under minimal assumptions of measurability of the parameters. We furthermore discuss and elucidate the relations between the periodic and the nonautonomous case.</div></div>","PeriodicalId":55496,"journal":{"name":"Applied Mathematics and Computation","volume":"498 ","pages":"Article 129376"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Symmetry and the Buchanan-Lillo conjecture: A resolution of the mixed feedback case\",\"authors\":\"Elena Braverman ,&nbsp;John Ioannis Stavroulakis\",\"doi\":\"10.1016/j.amc.2025.129376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Buchanan and Lillo both conjectured that oscillatory solutions of the first-order delay differential equation with positive feedback <span><math><msup><mrow><mi>x</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo><mi>x</mi><mo>(</mo><mi>τ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span>, <span><math><mi>t</mi><mo>≥</mo><mn>0</mn></math></span>, where <span><math><mn>0</mn><mo>≤</mo><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>≤</mo><mn>1</mn></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>t</mi><mo>−</mo><mi>τ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>≤</mo><mn>2.75</mn><mo>+</mo><mi>ln</mi><mo>⁡</mo><mn>2</mn><mo>,</mo><mi>t</mi><mo>∈</mo><mi>R</mi></math></span>, are asymptotic to a shifted multiple of a unique periodic solution. This special solution can also be described from the more general perspective of the mixed feedback case (sign-changing <em>p</em>), thanks to its symmetry (antiperiodicity). The analogue of this conjecture for negative feedback, <span><math><mi>p</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>≤</mo><mn>0</mn></math></span>, was resolved by Lillo, and the mixed feedback analog was recently set as an open problem. In this paper, we resolve the case of mixed feedback, obtaining results in support of the conjecture of Buchanan and Lillo, underlining its link to the symmetry of the periodic solution. In particular, we obtain and describe the optimal estimates on the necessary delay for existence of periodic (more generally, nonvanishing) solutions, with respect to the period (oscillation speed). These apply to almost any first-order delay system, as we consider the general nonautonomous case, under minimal assumptions of measurability of the parameters. We furthermore discuss and elucidate the relations between the periodic and the nonautonomous case.</div></div>\",\"PeriodicalId\":55496,\"journal\":{\"name\":\"Applied Mathematics and Computation\",\"volume\":\"498 \",\"pages\":\"Article 129376\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0096300325001031\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0096300325001031","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

布坎南和利洛都猜想,具有正反馈的一阶延迟微分方程的振荡解 x′(t)=p(t)x(τ(t)),t≥0,其中 0≤p(t)≤1,0≤t-τ(t)≤2.75+ln2,t∈R,渐近于唯一周期解的移位倍数。由于其对称性(反周期性),这种特殊解也可以从混合反馈情况(符号变化 p)的更一般角度来描述。这一猜想的负反馈类似情况 p(t)≤0 已由 Lillo 解决,而混合反馈类似情况最近被定为一个未决问题。在本文中,我们解决了混合反馈的情况,获得了支持布坎南和利洛猜想的结果,强调了其与周期解对称性的联系。特别是,我们获得并描述了关于周期(振荡速度)的最优估计,即周期解(更广义地说,非消失解)存在的必要延迟。这些估计适用于几乎所有一阶延迟系统,因为我们考虑的是一般的非自治情况,只需对参数的可测量性作最低限度的假设。此外,我们还讨论并阐明了周期与非自治情况之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symmetry and the Buchanan-Lillo conjecture: A resolution of the mixed feedback case
Buchanan and Lillo both conjectured that oscillatory solutions of the first-order delay differential equation with positive feedback x(t)=p(t)x(τ(t)), t0, where 0p(t)1, 0tτ(t)2.75+ln2,tR, are asymptotic to a shifted multiple of a unique periodic solution. This special solution can also be described from the more general perspective of the mixed feedback case (sign-changing p), thanks to its symmetry (antiperiodicity). The analogue of this conjecture for negative feedback, p(t)0, was resolved by Lillo, and the mixed feedback analog was recently set as an open problem. In this paper, we resolve the case of mixed feedback, obtaining results in support of the conjecture of Buchanan and Lillo, underlining its link to the symmetry of the periodic solution. In particular, we obtain and describe the optimal estimates on the necessary delay for existence of periodic (more generally, nonvanishing) solutions, with respect to the period (oscillation speed). These apply to almost any first-order delay system, as we consider the general nonautonomous case, under minimal assumptions of measurability of the parameters. We furthermore discuss and elucidate the relations between the periodic and the nonautonomous case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
10.00%
发文量
755
审稿时长
36 days
期刊介绍: Applied Mathematics and Computation addresses work at the interface between applied mathematics, numerical computation, and applications of systems – oriented ideas to the physical, biological, social, and behavioral sciences, and emphasizes papers of a computational nature focusing on new algorithms, their analysis and numerical results. In addition to presenting research papers, Applied Mathematics and Computation publishes review articles and single–topics issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信