利用黑盒和白盒机器学习预测孪生诱发塑性钢的多重疲劳性能

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ronghai Wu , Yuxin Zhang , Zichao Peng , Di Song , Heng Li
{"title":"利用黑盒和白盒机器学习预测孪生诱发塑性钢的多重疲劳性能","authors":"Ronghai Wu ,&nbsp;Yuxin Zhang ,&nbsp;Zichao Peng ,&nbsp;Di Song ,&nbsp;Heng Li","doi":"10.1016/j.mechmat.2025.105307","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting multiple fatigue properties of metals under a wide range of conditions is still a challenge, as massive high-dimension inputs and multiple outputs are involved. We systematically conduct fatigue experiments on TWIP steel under various conditions, including different preloading methods, temperatures, strain amplitudes and mean strains. Using experimental data, we propose both black-box and white-box machine learning models to predict the fatigue performance of TWIP steel. The black-box model employs dimensionality reduction, clustering and regression techniques to achieve simultaneous predictions for fatigue life and maximum stress amplitude. The predicted fatigue lives are 100% within 3✕ error band and 88.31% within 2✕ error band. The predicted maximum stress amplitudes are all within 1.51✕ error band. The white-box model utilizes symbolic regression and matching analysis to automatically discover several predictive formulas for fatigue life and maximum stress amplitude, without any predefined equations. The three optimal fatigue life prediction formulas yield 100% predicted values within 3✕ error band and 98% within 2✕ error band. The two optimal maximum stress amplitude prediction formulas yield predicted values all within 1.09✕ error band. Based on the results, we discuss the applicability of our models and propose suggestions for future developments in machine learning fatigue performance predictions.</div></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":"205 ","pages":"Article 105307"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting multiple fatigue properties of twinning-induced plasticity steels by black-box and white-box machine learning\",\"authors\":\"Ronghai Wu ,&nbsp;Yuxin Zhang ,&nbsp;Zichao Peng ,&nbsp;Di Song ,&nbsp;Heng Li\",\"doi\":\"10.1016/j.mechmat.2025.105307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Predicting multiple fatigue properties of metals under a wide range of conditions is still a challenge, as massive high-dimension inputs and multiple outputs are involved. We systematically conduct fatigue experiments on TWIP steel under various conditions, including different preloading methods, temperatures, strain amplitudes and mean strains. Using experimental data, we propose both black-box and white-box machine learning models to predict the fatigue performance of TWIP steel. The black-box model employs dimensionality reduction, clustering and regression techniques to achieve simultaneous predictions for fatigue life and maximum stress amplitude. The predicted fatigue lives are 100% within 3✕ error band and 88.31% within 2✕ error band. The predicted maximum stress amplitudes are all within 1.51✕ error band. The white-box model utilizes symbolic regression and matching analysis to automatically discover several predictive formulas for fatigue life and maximum stress amplitude, without any predefined equations. The three optimal fatigue life prediction formulas yield 100% predicted values within 3✕ error band and 98% within 2✕ error band. The two optimal maximum stress amplitude prediction formulas yield predicted values all within 1.09✕ error band. Based on the results, we discuss the applicability of our models and propose suggestions for future developments in machine learning fatigue performance predictions.</div></div>\",\"PeriodicalId\":18296,\"journal\":{\"name\":\"Mechanics of Materials\",\"volume\":\"205 \",\"pages\":\"Article 105307\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167663625000699\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663625000699","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于涉及大量的高维输入和多个输出,预测金属在大范围条件下的多重疲劳特性仍然是一个挑战。系统地对TWIP钢进行了不同预紧方式、温度、应变幅值、平均应变等条件下的疲劳试验。利用实验数据,我们提出了黑盒和白盒机器学习模型来预测TWIP钢的疲劳性能。黑盒模型采用降维、聚类和回归技术来实现对疲劳寿命和最大应力幅的同时预测。预测的疲劳寿命在3✕误差范围内为100%,在2✕误差范围内为88.31%。预测的最大应力幅值都在1.51✕误差范围内。白盒模型利用符号回归和匹配分析,自动发现疲劳寿命和最大应力幅的预测公式,不需要任何预定义方程。三个最佳疲劳寿命预测公式在3✕误差范围内产生100%的预测值,在2✕误差范围内产生98%的预测值。两个最优最大应力幅预测公式产生的预测值都在1.09✕误差范围内。基于结果,我们讨论了模型的适用性,并对机器学习疲劳性能预测的未来发展提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting multiple fatigue properties of twinning-induced plasticity steels by black-box and white-box machine learning
Predicting multiple fatigue properties of metals under a wide range of conditions is still a challenge, as massive high-dimension inputs and multiple outputs are involved. We systematically conduct fatigue experiments on TWIP steel under various conditions, including different preloading methods, temperatures, strain amplitudes and mean strains. Using experimental data, we propose both black-box and white-box machine learning models to predict the fatigue performance of TWIP steel. The black-box model employs dimensionality reduction, clustering and regression techniques to achieve simultaneous predictions for fatigue life and maximum stress amplitude. The predicted fatigue lives are 100% within 3✕ error band and 88.31% within 2✕ error band. The predicted maximum stress amplitudes are all within 1.51✕ error band. The white-box model utilizes symbolic regression and matching analysis to automatically discover several predictive formulas for fatigue life and maximum stress amplitude, without any predefined equations. The three optimal fatigue life prediction formulas yield 100% predicted values within 3✕ error band and 98% within 2✕ error band. The two optimal maximum stress amplitude prediction formulas yield predicted values all within 1.09✕ error band. Based on the results, we discuss the applicability of our models and propose suggestions for future developments in machine learning fatigue performance predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechanics of Materials
Mechanics of Materials 工程技术-材料科学:综合
CiteScore
7.60
自引率
5.10%
发文量
243
审稿时长
46 days
期刊介绍: Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信