三维偏振麦克斯韦光束中软盘弯曲模态的观察

IF 9 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Yi Chen, James P. McInerney, Paul N. Krause, Jonathan L. G. Schneider, Martin Wegener, Xiaoming Mao
{"title":"三维偏振麦克斯韦光束中软盘弯曲模态的观察","authors":"Yi Chen, James P. McInerney, Paul N. Krause, Jonathan L. G. Schneider, Martin Wegener, Xiaoming Mao","doi":"10.1103/physrevlett.134.086101","DOIUrl":null,"url":null,"abstract":"Beams are fundamental objects in solid mechanics, displaying flexural and torsional modes in three dimensions, and support important applications across all fields of engineering. Here, we introduce Maxwell lattice topological mechanics to beams and present a Maxwell beam model that supports topological floppy flexural modes, localized exclusively at one of its ends. We introduce a modified topological index for this Maxwell beam which lacks a complete band gap, and establish a relation between Maxwell topological polarization and frozen evanescent phonons, shedding new light on the bulk origin of the topological localization. The floppy eigenmodes and their exceptional robustness against defects are experimentally validated through vibration measurements on 3D laser-printed samples at kHz frequencies. This study opens new avenues in fields from mechanical and civil engineering to robotics by introducing topologically polarized mechanics in slender structures. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"28 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation of Floppy Flexural Modes in a 3D Polarized Maxwell Beam\",\"authors\":\"Yi Chen, James P. McInerney, Paul N. Krause, Jonathan L. G. Schneider, Martin Wegener, Xiaoming Mao\",\"doi\":\"10.1103/physrevlett.134.086101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beams are fundamental objects in solid mechanics, displaying flexural and torsional modes in three dimensions, and support important applications across all fields of engineering. Here, we introduce Maxwell lattice topological mechanics to beams and present a Maxwell beam model that supports topological floppy flexural modes, localized exclusively at one of its ends. We introduce a modified topological index for this Maxwell beam which lacks a complete band gap, and establish a relation between Maxwell topological polarization and frozen evanescent phonons, shedding new light on the bulk origin of the topological localization. The floppy eigenmodes and their exceptional robustness against defects are experimentally validated through vibration measurements on 3D laser-printed samples at kHz frequencies. This study opens new avenues in fields from mechanical and civil engineering to robotics by introducing topologically polarized mechanics in slender structures. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.134.086101\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.086101","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

梁是固体力学中的基本对象,在三维中显示弯曲和扭转模式,并支持所有工程领域的重要应用。在这里,我们将麦克斯韦晶格拓扑力学引入到梁中,并提出了一个支持拓扑软性弯曲模式的麦克斯韦梁模型,该模型只局限于其一端。我们对缺乏完整带隙的麦克斯韦光束引入了改进的拓扑指数,并建立了麦克斯韦拓扑极化与冻结消失声子之间的关系,对拓扑局域化的体源有了新的认识。通过对3D激光打印样品在kHz频率下的振动测量,实验验证了软盘特征模及其对缺陷的特殊鲁棒性。本研究通过在细长结构中引入拓扑极化力学,开辟了从机械、土木工程到机器人等领域的新途径。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observation of Floppy Flexural Modes in a 3D Polarized Maxwell Beam
Beams are fundamental objects in solid mechanics, displaying flexural and torsional modes in three dimensions, and support important applications across all fields of engineering. Here, we introduce Maxwell lattice topological mechanics to beams and present a Maxwell beam model that supports topological floppy flexural modes, localized exclusively at one of its ends. We introduce a modified topological index for this Maxwell beam which lacks a complete band gap, and establish a relation between Maxwell topological polarization and frozen evanescent phonons, shedding new light on the bulk origin of the topological localization. The floppy eigenmodes and their exceptional robustness against defects are experimentally validated through vibration measurements on 3D laser-printed samples at kHz frequencies. This study opens new avenues in fields from mechanical and civil engineering to robotics by introducing topologically polarized mechanics in slender structures. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review letters
Physical review letters 物理-物理:综合
CiteScore
16.50
自引率
7.00%
发文量
2673
审稿时长
2.2 months
期刊介绍: Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics: General physics, including statistical and quantum mechanics and quantum information Gravitation, astrophysics, and cosmology Elementary particles and fields Nuclear physics Atomic, molecular, and optical physics Nonlinear dynamics, fluid dynamics, and classical optics Plasma and beam physics Condensed matter and materials physics Polymers, soft matter, biological, climate and interdisciplinary physics, including networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信