在水凝胶悬浮阵列中生成基质刚度的正交梯度和趋化线索以研究 hMSCs 迁移

IF 8.2 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Zhen Xu, Anna Ponek, Jordan Thomas, Yibing Qyang
{"title":"在水凝胶悬浮阵列中生成基质刚度的正交梯度和趋化线索以研究 hMSCs 迁移","authors":"Zhen Xu, Anna Ponek, Jordan Thomas, Yibing Qyang","doi":"10.1021/acssensors.4c02793","DOIUrl":null,"url":null,"abstract":"Stem cell migration is a tightly regulated process in vivo, orchestrated by a collection of mechanical and chemotactic cues via concentration gradients. A variety of in vitro assays have been developed to facilitate cell migration studies; however, very few assays allow the investigation of both matrix stiffness and chemotactic cues on cell migration within a single device, especially in a three-dimensional (3D) environment. Here, we develop a microfluidic device that can produce 3D orthogonal gradients of matrix stiffness and chemotactic cues with varied steepness in a suspended array of hydrogel cylinders. The device’s working principle is the formation of diffusion-driven concentration gradients within a suspended array of hydrogel cylinders between a source and a sink. Device fabrication is based on poly(dimethylsiloxane) (PDMS) replica molding, followed by assembly on a glass substrate. To validate this device, we study the migration of human mesenchymal stem cells (hMSCs) in response to orthogonal gradients of matrix stiffness and stromal cell-derived factor 1 alpha (SDF-1α). This technology has the potential to be applied to various cell types, facilitating exploration in different cellular contexts.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"24 1 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of Orthogonal Gradients of the Matrix Stiffness and Chemotactic Cues in a Suspended Array of Hydrogel to Study hMSCs Migration\",\"authors\":\"Zhen Xu, Anna Ponek, Jordan Thomas, Yibing Qyang\",\"doi\":\"10.1021/acssensors.4c02793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stem cell migration is a tightly regulated process in vivo, orchestrated by a collection of mechanical and chemotactic cues via concentration gradients. A variety of in vitro assays have been developed to facilitate cell migration studies; however, very few assays allow the investigation of both matrix stiffness and chemotactic cues on cell migration within a single device, especially in a three-dimensional (3D) environment. Here, we develop a microfluidic device that can produce 3D orthogonal gradients of matrix stiffness and chemotactic cues with varied steepness in a suspended array of hydrogel cylinders. The device’s working principle is the formation of diffusion-driven concentration gradients within a suspended array of hydrogel cylinders between a source and a sink. Device fabrication is based on poly(dimethylsiloxane) (PDMS) replica molding, followed by assembly on a glass substrate. To validate this device, we study the migration of human mesenchymal stem cells (hMSCs) in response to orthogonal gradients of matrix stiffness and stromal cell-derived factor 1 alpha (SDF-1α). This technology has the potential to be applied to various cell types, facilitating exploration in different cellular contexts.\",\"PeriodicalId\":24,\"journal\":{\"name\":\"ACS Sensors\",\"volume\":\"24 1 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Sensors\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acssensors.4c02793\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c02793","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generation of Orthogonal Gradients of the Matrix Stiffness and Chemotactic Cues in a Suspended Array of Hydrogel to Study hMSCs Migration

Generation of Orthogonal Gradients of the Matrix Stiffness and Chemotactic Cues in a Suspended Array of Hydrogel to Study hMSCs Migration
Stem cell migration is a tightly regulated process in vivo, orchestrated by a collection of mechanical and chemotactic cues via concentration gradients. A variety of in vitro assays have been developed to facilitate cell migration studies; however, very few assays allow the investigation of both matrix stiffness and chemotactic cues on cell migration within a single device, especially in a three-dimensional (3D) environment. Here, we develop a microfluidic device that can produce 3D orthogonal gradients of matrix stiffness and chemotactic cues with varied steepness in a suspended array of hydrogel cylinders. The device’s working principle is the formation of diffusion-driven concentration gradients within a suspended array of hydrogel cylinders between a source and a sink. Device fabrication is based on poly(dimethylsiloxane) (PDMS) replica molding, followed by assembly on a glass substrate. To validate this device, we study the migration of human mesenchymal stem cells (hMSCs) in response to orthogonal gradients of matrix stiffness and stromal cell-derived factor 1 alpha (SDF-1α). This technology has the potential to be applied to various cell types, facilitating exploration in different cellular contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Sensors
ACS Sensors Chemical Engineering-Bioengineering
CiteScore
14.50
自引率
3.40%
发文量
372
期刊介绍: ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信