区间和一般2型模糊推理系统的完全格框架

IF 11.9 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Peter Sussner
{"title":"区间和一般2型模糊推理系统的完全格框架","authors":"Peter Sussner","doi":"10.1109/TFUZZ.2025.3545295","DOIUrl":null,"url":null,"abstract":"The secondary membership functions (MFs) of type-2 (T2) fuzzy sets (FSs) are generally assumed to be convex, normal, and upper semicontinuous. Although not explicitly stated, this fact can be detected by taking a look at the <inline-formula><tex-math>$\\alpha$</tex-math></inline-formula>-cuts of their join and meet in vertical-slice format. These two operations induce <inline-formula><tex-math>$[0,1]_{\\mathcal {F}}$</tex-math></inline-formula>, i.e., the complete lattice of the convex normal upper semicontinuous FSs on <inline-formula><tex-math>$[0, 1]$</tex-math></inline-formula> together with the so-called convolution order. In this article, we deduce the <inline-formula><tex-math>$\\alpha$</tex-math></inline-formula>-cut representations of suprema and infima over finite and infinite sets that occur in the inference mechanisms of general type-2 (GT2) fuzzy inference systems (FISs). We continue by developing a complete, albeit not distributive, lattice structure for the class of all convex upper semicontinuous FSs on <inline-formula><tex-math>$[0, 1]$</tex-math></inline-formula>, denoted <inline-formula><tex-math>${\\mathcal {F}}_{CU}$</tex-math></inline-formula>, which permits designing T2 FISs involving T2 FSs whose secondary MFs are not necessarily normal. Using our formulae of the <inline-formula><tex-math>$\\alpha$</tex-math></inline-formula>-cuts of suprema and infima in <inline-formula><tex-math>$[0,1]_{\\mathcal {F}}$</tex-math></inline-formula> and <inline-formula><tex-math>${\\mathcal {F}}_{CU}$</tex-math></inline-formula>, whose elements we describe using so-called anti-dilations, we prove that <inline-formula><tex-math>$[0,1]_{\\mathcal {F}}$</tex-math></inline-formula> is a closed sublattice of <inline-formula><tex-math>${\\mathcal {F}}_{CU}$</tex-math></inline-formula>. We also expand on the lattice-theoretical relations between <inline-formula><tex-math>$[0,1]_{\\mathcal {F}}$</tex-math></inline-formula> and the complete lattices of the convex (strictly) normal FSs. In addition, we show that <inline-formula><tex-math>$[0,1]_{\\mathcal {F}}$</tex-math></inline-formula> and <inline-formula><tex-math>${\\mathcal {F}}_{CU}$</tex-math></inline-formula> contain complete sublattices of (extended) interval type-2 (IT2) FSs. With these results at hand, it becomes easy to perform the transitions FISs under the minimum t-norm <inline-formula><tex-math>$\\to$</tex-math></inline-formula> (closed) IT2 FISs <inline-formula><tex-math>$\\to$</tex-math></inline-formula> GT2 FISs currently used in practice <inline-formula><tex-math>$\\to$</tex-math></inline-formula> GT2 FISs having not necessarily normal secondary MFs.","PeriodicalId":13212,"journal":{"name":"IEEE Transactions on Fuzzy Systems","volume":"33 9","pages":"2972-2986"},"PeriodicalIF":11.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908068","citationCount":"0","resultStr":"{\"title\":\"Complete Lattices as Frameworks for Interval and General Type-2 Fuzzy Inference Systems\",\"authors\":\"Peter Sussner\",\"doi\":\"10.1109/TFUZZ.2025.3545295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The secondary membership functions (MFs) of type-2 (T2) fuzzy sets (FSs) are generally assumed to be convex, normal, and upper semicontinuous. Although not explicitly stated, this fact can be detected by taking a look at the <inline-formula><tex-math>$\\\\alpha$</tex-math></inline-formula>-cuts of their join and meet in vertical-slice format. These two operations induce <inline-formula><tex-math>$[0,1]_{\\\\mathcal {F}}$</tex-math></inline-formula>, i.e., the complete lattice of the convex normal upper semicontinuous FSs on <inline-formula><tex-math>$[0, 1]$</tex-math></inline-formula> together with the so-called convolution order. In this article, we deduce the <inline-formula><tex-math>$\\\\alpha$</tex-math></inline-formula>-cut representations of suprema and infima over finite and infinite sets that occur in the inference mechanisms of general type-2 (GT2) fuzzy inference systems (FISs). We continue by developing a complete, albeit not distributive, lattice structure for the class of all convex upper semicontinuous FSs on <inline-formula><tex-math>$[0, 1]$</tex-math></inline-formula>, denoted <inline-formula><tex-math>${\\\\mathcal {F}}_{CU}$</tex-math></inline-formula>, which permits designing T2 FISs involving T2 FSs whose secondary MFs are not necessarily normal. Using our formulae of the <inline-formula><tex-math>$\\\\alpha$</tex-math></inline-formula>-cuts of suprema and infima in <inline-formula><tex-math>$[0,1]_{\\\\mathcal {F}}$</tex-math></inline-formula> and <inline-formula><tex-math>${\\\\mathcal {F}}_{CU}$</tex-math></inline-formula>, whose elements we describe using so-called anti-dilations, we prove that <inline-formula><tex-math>$[0,1]_{\\\\mathcal {F}}$</tex-math></inline-formula> is a closed sublattice of <inline-formula><tex-math>${\\\\mathcal {F}}_{CU}$</tex-math></inline-formula>. We also expand on the lattice-theoretical relations between <inline-formula><tex-math>$[0,1]_{\\\\mathcal {F}}$</tex-math></inline-formula> and the complete lattices of the convex (strictly) normal FSs. In addition, we show that <inline-formula><tex-math>$[0,1]_{\\\\mathcal {F}}$</tex-math></inline-formula> and <inline-formula><tex-math>${\\\\mathcal {F}}_{CU}$</tex-math></inline-formula> contain complete sublattices of (extended) interval type-2 (IT2) FSs. With these results at hand, it becomes easy to perform the transitions FISs under the minimum t-norm <inline-formula><tex-math>$\\\\to$</tex-math></inline-formula> (closed) IT2 FISs <inline-formula><tex-math>$\\\\to$</tex-math></inline-formula> GT2 FISs currently used in practice <inline-formula><tex-math>$\\\\to$</tex-math></inline-formula> GT2 FISs having not necessarily normal secondary MFs.\",\"PeriodicalId\":13212,\"journal\":{\"name\":\"IEEE Transactions on Fuzzy Systems\",\"volume\":\"33 9\",\"pages\":\"2972-2986\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908068\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Fuzzy Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10908068/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10908068/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

2型(T2)模糊集的次隶属函数一般假定为凸、正、上半连续。虽然没有明确说明,但可以通过查看它们的连接和垂直切片格式的会合的$\alpha$-cuts来检测这一事实。这两种运算得到$[0,1]_{\mathcal {F}}$,即$[0,1]$上凸正规半连续FSs的完备格以及所谓的卷积阶。在本文中,我们推导了一般2型(GT2)模糊推理系统(FISs)的推理机制中有限集和无限集上的上和无穷的$\alpha$-cut表示。我们继续发展了$[0,1]$上的所有凸上半连续FSs类的完备(尽管不是分布的)晶格结构,记为${\mathcal {F}}_{CU}$,它允许设计涉及T2 FSs的T2 FSs,其次级MFs不一定是正态的。利用$[0,1]_{\mathcal {F}}$和${\mathcal {F}}_{CU}$的上切和下切的$\alpha$-切公式,证明$[0,1]_{\mathcal {F}}$是${\mathcal {F}}_{CU}$的闭子格。我们还扩展了$[0,1]_{\mathcal {F}}$与凸(严格)正规FSs的完全格之间的格-理论关系。此外,我们证明$[0,1]_{\mathcal {F}}$和${\mathcal {F}}_{CU}$包含(扩展)区间类型-2 (IT2) FSs的完全子格。与这些结果,很容易执行最低下的过渡费斯t-norm \美元(关闭)IT2费斯\美元GT2费斯目前在实践中使用\美元GT2费斯拥有正常二级MFs不一定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete Lattices as Frameworks for Interval and General Type-2 Fuzzy Inference Systems
The secondary membership functions (MFs) of type-2 (T2) fuzzy sets (FSs) are generally assumed to be convex, normal, and upper semicontinuous. Although not explicitly stated, this fact can be detected by taking a look at the $\alpha$-cuts of their join and meet in vertical-slice format. These two operations induce $[0,1]_{\mathcal {F}}$, i.e., the complete lattice of the convex normal upper semicontinuous FSs on $[0, 1]$ together with the so-called convolution order. In this article, we deduce the $\alpha$-cut representations of suprema and infima over finite and infinite sets that occur in the inference mechanisms of general type-2 (GT2) fuzzy inference systems (FISs). We continue by developing a complete, albeit not distributive, lattice structure for the class of all convex upper semicontinuous FSs on $[0, 1]$, denoted ${\mathcal {F}}_{CU}$, which permits designing T2 FISs involving T2 FSs whose secondary MFs are not necessarily normal. Using our formulae of the $\alpha$-cuts of suprema and infima in $[0,1]_{\mathcal {F}}$ and ${\mathcal {F}}_{CU}$, whose elements we describe using so-called anti-dilations, we prove that $[0,1]_{\mathcal {F}}$ is a closed sublattice of ${\mathcal {F}}_{CU}$. We also expand on the lattice-theoretical relations between $[0,1]_{\mathcal {F}}$ and the complete lattices of the convex (strictly) normal FSs. In addition, we show that $[0,1]_{\mathcal {F}}$ and ${\mathcal {F}}_{CU}$ contain complete sublattices of (extended) interval type-2 (IT2) FSs. With these results at hand, it becomes easy to perform the transitions FISs under the minimum t-norm $\to$ (closed) IT2 FISs $\to$ GT2 FISs currently used in practice $\to$ GT2 FISs having not necessarily normal secondary MFs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Fuzzy Systems
IEEE Transactions on Fuzzy Systems 工程技术-工程:电子与电气
CiteScore
20.50
自引率
13.40%
发文量
517
审稿时长
3.0 months
期刊介绍: The IEEE Transactions on Fuzzy Systems is a scholarly journal that focuses on the theory, design, and application of fuzzy systems. It aims to publish high-quality technical papers that contribute significant technical knowledge and exploratory developments in the field of fuzzy systems. The journal particularly emphasizes engineering systems and scientific applications. In addition to research articles, the Transactions also includes a letters section featuring current information, comments, and rebuttals related to published papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信