{"title":"区间和一般2型模糊推理系统的完全格框架","authors":"Peter Sussner","doi":"10.1109/TFUZZ.2025.3545295","DOIUrl":null,"url":null,"abstract":"The secondary membership functions (MFs) of type-2 (T2) fuzzy sets (FSs) are generally assumed to be convex, normal, and upper semicontinuous. Although not explicitly stated, this fact can be detected by taking a look at the <inline-formula><tex-math>$\\alpha$</tex-math></inline-formula>-cuts of their join and meet in vertical-slice format. These two operations induce <inline-formula><tex-math>$[0,1]_{\\mathcal {F}}$</tex-math></inline-formula>, i.e., the complete lattice of the convex normal upper semicontinuous FSs on <inline-formula><tex-math>$[0, 1]$</tex-math></inline-formula> together with the so-called convolution order. In this article, we deduce the <inline-formula><tex-math>$\\alpha$</tex-math></inline-formula>-cut representations of suprema and infima over finite and infinite sets that occur in the inference mechanisms of general type-2 (GT2) fuzzy inference systems (FISs). We continue by developing a complete, albeit not distributive, lattice structure for the class of all convex upper semicontinuous FSs on <inline-formula><tex-math>$[0, 1]$</tex-math></inline-formula>, denoted <inline-formula><tex-math>${\\mathcal {F}}_{CU}$</tex-math></inline-formula>, which permits designing T2 FISs involving T2 FSs whose secondary MFs are not necessarily normal. Using our formulae of the <inline-formula><tex-math>$\\alpha$</tex-math></inline-formula>-cuts of suprema and infima in <inline-formula><tex-math>$[0,1]_{\\mathcal {F}}$</tex-math></inline-formula> and <inline-formula><tex-math>${\\mathcal {F}}_{CU}$</tex-math></inline-formula>, whose elements we describe using so-called anti-dilations, we prove that <inline-formula><tex-math>$[0,1]_{\\mathcal {F}}$</tex-math></inline-formula> is a closed sublattice of <inline-formula><tex-math>${\\mathcal {F}}_{CU}$</tex-math></inline-formula>. We also expand on the lattice-theoretical relations between <inline-formula><tex-math>$[0,1]_{\\mathcal {F}}$</tex-math></inline-formula> and the complete lattices of the convex (strictly) normal FSs. In addition, we show that <inline-formula><tex-math>$[0,1]_{\\mathcal {F}}$</tex-math></inline-formula> and <inline-formula><tex-math>${\\mathcal {F}}_{CU}$</tex-math></inline-formula> contain complete sublattices of (extended) interval type-2 (IT2) FSs. With these results at hand, it becomes easy to perform the transitions FISs under the minimum t-norm <inline-formula><tex-math>$\\to$</tex-math></inline-formula> (closed) IT2 FISs <inline-formula><tex-math>$\\to$</tex-math></inline-formula> GT2 FISs currently used in practice <inline-formula><tex-math>$\\to$</tex-math></inline-formula> GT2 FISs having not necessarily normal secondary MFs.","PeriodicalId":13212,"journal":{"name":"IEEE Transactions on Fuzzy Systems","volume":"33 9","pages":"2972-2986"},"PeriodicalIF":11.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908068","citationCount":"0","resultStr":"{\"title\":\"Complete Lattices as Frameworks for Interval and General Type-2 Fuzzy Inference Systems\",\"authors\":\"Peter Sussner\",\"doi\":\"10.1109/TFUZZ.2025.3545295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The secondary membership functions (MFs) of type-2 (T2) fuzzy sets (FSs) are generally assumed to be convex, normal, and upper semicontinuous. Although not explicitly stated, this fact can be detected by taking a look at the <inline-formula><tex-math>$\\\\alpha$</tex-math></inline-formula>-cuts of their join and meet in vertical-slice format. These two operations induce <inline-formula><tex-math>$[0,1]_{\\\\mathcal {F}}$</tex-math></inline-formula>, i.e., the complete lattice of the convex normal upper semicontinuous FSs on <inline-formula><tex-math>$[0, 1]$</tex-math></inline-formula> together with the so-called convolution order. In this article, we deduce the <inline-formula><tex-math>$\\\\alpha$</tex-math></inline-formula>-cut representations of suprema and infima over finite and infinite sets that occur in the inference mechanisms of general type-2 (GT2) fuzzy inference systems (FISs). We continue by developing a complete, albeit not distributive, lattice structure for the class of all convex upper semicontinuous FSs on <inline-formula><tex-math>$[0, 1]$</tex-math></inline-formula>, denoted <inline-formula><tex-math>${\\\\mathcal {F}}_{CU}$</tex-math></inline-formula>, which permits designing T2 FISs involving T2 FSs whose secondary MFs are not necessarily normal. Using our formulae of the <inline-formula><tex-math>$\\\\alpha$</tex-math></inline-formula>-cuts of suprema and infima in <inline-formula><tex-math>$[0,1]_{\\\\mathcal {F}}$</tex-math></inline-formula> and <inline-formula><tex-math>${\\\\mathcal {F}}_{CU}$</tex-math></inline-formula>, whose elements we describe using so-called anti-dilations, we prove that <inline-formula><tex-math>$[0,1]_{\\\\mathcal {F}}$</tex-math></inline-formula> is a closed sublattice of <inline-formula><tex-math>${\\\\mathcal {F}}_{CU}$</tex-math></inline-formula>. We also expand on the lattice-theoretical relations between <inline-formula><tex-math>$[0,1]_{\\\\mathcal {F}}$</tex-math></inline-formula> and the complete lattices of the convex (strictly) normal FSs. In addition, we show that <inline-formula><tex-math>$[0,1]_{\\\\mathcal {F}}$</tex-math></inline-formula> and <inline-formula><tex-math>${\\\\mathcal {F}}_{CU}$</tex-math></inline-formula> contain complete sublattices of (extended) interval type-2 (IT2) FSs. With these results at hand, it becomes easy to perform the transitions FISs under the minimum t-norm <inline-formula><tex-math>$\\\\to$</tex-math></inline-formula> (closed) IT2 FISs <inline-formula><tex-math>$\\\\to$</tex-math></inline-formula> GT2 FISs currently used in practice <inline-formula><tex-math>$\\\\to$</tex-math></inline-formula> GT2 FISs having not necessarily normal secondary MFs.\",\"PeriodicalId\":13212,\"journal\":{\"name\":\"IEEE Transactions on Fuzzy Systems\",\"volume\":\"33 9\",\"pages\":\"2972-2986\"},\"PeriodicalIF\":11.9000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10908068\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Fuzzy Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10908068/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10908068/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Complete Lattices as Frameworks for Interval and General Type-2 Fuzzy Inference Systems
The secondary membership functions (MFs) of type-2 (T2) fuzzy sets (FSs) are generally assumed to be convex, normal, and upper semicontinuous. Although not explicitly stated, this fact can be detected by taking a look at the $\alpha$-cuts of their join and meet in vertical-slice format. These two operations induce $[0,1]_{\mathcal {F}}$, i.e., the complete lattice of the convex normal upper semicontinuous FSs on $[0, 1]$ together with the so-called convolution order. In this article, we deduce the $\alpha$-cut representations of suprema and infima over finite and infinite sets that occur in the inference mechanisms of general type-2 (GT2) fuzzy inference systems (FISs). We continue by developing a complete, albeit not distributive, lattice structure for the class of all convex upper semicontinuous FSs on $[0, 1]$, denoted ${\mathcal {F}}_{CU}$, which permits designing T2 FISs involving T2 FSs whose secondary MFs are not necessarily normal. Using our formulae of the $\alpha$-cuts of suprema and infima in $[0,1]_{\mathcal {F}}$ and ${\mathcal {F}}_{CU}$, whose elements we describe using so-called anti-dilations, we prove that $[0,1]_{\mathcal {F}}$ is a closed sublattice of ${\mathcal {F}}_{CU}$. We also expand on the lattice-theoretical relations between $[0,1]_{\mathcal {F}}$ and the complete lattices of the convex (strictly) normal FSs. In addition, we show that $[0,1]_{\mathcal {F}}$ and ${\mathcal {F}}_{CU}$ contain complete sublattices of (extended) interval type-2 (IT2) FSs. With these results at hand, it becomes easy to perform the transitions FISs under the minimum t-norm $\to$ (closed) IT2 FISs $\to$ GT2 FISs currently used in practice $\to$ GT2 FISs having not necessarily normal secondary MFs.
期刊介绍:
The IEEE Transactions on Fuzzy Systems is a scholarly journal that focuses on the theory, design, and application of fuzzy systems. It aims to publish high-quality technical papers that contribute significant technical knowledge and exploratory developments in the field of fuzzy systems. The journal particularly emphasizes engineering systems and scientific applications. In addition to research articles, the Transactions also includes a letters section featuring current information, comments, and rebuttals related to published papers.