海洋硫酸盐捕获了古生代向现代陆地风化环境的过渡

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Anna R. Waldeck, Haley C. Olson, Peter W. Crockford, Abby M. Couture, Benjamin R. Cowie, Eben B. Hodgin, Kristin D. Bergmann, Keith Dewing, Stephen E. Grasby, Ryan J. Clark, Francis A. Macdonald, David T. Johnston
{"title":"海洋硫酸盐捕获了古生代向现代陆地风化环境的过渡","authors":"Anna R. Waldeck, Haley C. Olson, Peter W. Crockford, Abby M. Couture, Benjamin R. Cowie, Eben B. Hodgin, Kristin D. Bergmann, Keith Dewing, Stephen E. Grasby, Ryan J. Clark, Francis A. Macdonald, David T. Johnston","doi":"10.1038/s41467-025-57282-y","DOIUrl":null,"url":null,"abstract":"<p>The triple oxygen isotope composition of sulphate minerals has been used to constrain the evolution of Earth’s surface environment (e.g., pO<sub>2</sub>, pCO<sub>2</sub> and gross primary productivity) throughout the Proterozoic Eon. This approach presumes the incorporation of atmospheric O<sub>2</sub> atoms into riverine sulphate via the oxidative weathering of pyrite. However, this is not borne out in recent geological or modern sulphate records, where an atmospheric signal is imperceptible and where terrestrial pyrite weathering occurs predominantly in bedrock fractures that are physically more removed from atmospheric O<sub>2</sub>. To better define the transition from a Proterozoic to a modern-like weathering regime, here we present new measurements from twelve marine evaporite basins spanning the Phanerozoic. These data display a step-like transition in the triple oxygen isotope composition of evaporite sulphate during the mid-Paleozoic (420 to 387.7 million years ago). We propose that the evolution of early root systems deepened the locus of pyrite oxidation and reduced the incorporation of O<sub>2</sub> into sulphate. Further, the early Devonian proliferation of land plants increased terrestrial organic carbon burial, releasing free oxygen that fueled increased redox recycling of soil-bound iron and resulted in the final rise in pO<sub>2</sub> to modern-like levels.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"8 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marine sulphate captures a Paleozoic transition to a modern terrestrial weathering environment\",\"authors\":\"Anna R. Waldeck, Haley C. Olson, Peter W. Crockford, Abby M. Couture, Benjamin R. Cowie, Eben B. Hodgin, Kristin D. Bergmann, Keith Dewing, Stephen E. Grasby, Ryan J. Clark, Francis A. Macdonald, David T. Johnston\",\"doi\":\"10.1038/s41467-025-57282-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The triple oxygen isotope composition of sulphate minerals has been used to constrain the evolution of Earth’s surface environment (e.g., pO<sub>2</sub>, pCO<sub>2</sub> and gross primary productivity) throughout the Proterozoic Eon. This approach presumes the incorporation of atmospheric O<sub>2</sub> atoms into riverine sulphate via the oxidative weathering of pyrite. However, this is not borne out in recent geological or modern sulphate records, where an atmospheric signal is imperceptible and where terrestrial pyrite weathering occurs predominantly in bedrock fractures that are physically more removed from atmospheric O<sub>2</sub>. To better define the transition from a Proterozoic to a modern-like weathering regime, here we present new measurements from twelve marine evaporite basins spanning the Phanerozoic. These data display a step-like transition in the triple oxygen isotope composition of evaporite sulphate during the mid-Paleozoic (420 to 387.7 million years ago). We propose that the evolution of early root systems deepened the locus of pyrite oxidation and reduced the incorporation of O<sub>2</sub> into sulphate. Further, the early Devonian proliferation of land plants increased terrestrial organic carbon burial, releasing free oxygen that fueled increased redox recycling of soil-bound iron and resulted in the final rise in pO<sub>2</sub> to modern-like levels.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57282-y\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57282-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

硫酸盐矿物的三重氧同位素组成一直被用来制约整个新生代地球表面环境的演变(如 pO2、pCO2 和总初级生产力)。这种方法假定大气中的 O2 原子通过黄铁矿的氧化风化作用进入河流硫酸盐中。然而,这在近期地质或现代硫酸盐记录中并没有得到证实,在这些记录中,大气信号并不明显,而且陆地黄铁矿风化主要发生在基岩裂缝中,与大气中的 O2 有更大的物理距离。为了更好地界定从新生代向现代风化机制的过渡,我们在此展示了跨越新生代的 12 个海洋蒸发岩盆地的新测量数据。这些数据显示,在古生代中期(4.2 亿年前至 3.877 亿年前),蒸发岩硫酸盐的三重氧同位素组成发生了阶梯式转变。我们认为,早期根系的演化加深了黄铁矿氧化的位置,减少了 O2 与硫酸盐的结合。此外,泥盆纪早期陆生植物的大量繁殖增加了陆地有机碳的埋藏,释放出游离氧,促进了土壤结合铁的氧化还原循环,导致 pO2 最终上升到类似现代的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Marine sulphate captures a Paleozoic transition to a modern terrestrial weathering environment

Marine sulphate captures a Paleozoic transition to a modern terrestrial weathering environment

The triple oxygen isotope composition of sulphate minerals has been used to constrain the evolution of Earth’s surface environment (e.g., pO2, pCO2 and gross primary productivity) throughout the Proterozoic Eon. This approach presumes the incorporation of atmospheric O2 atoms into riverine sulphate via the oxidative weathering of pyrite. However, this is not borne out in recent geological or modern sulphate records, where an atmospheric signal is imperceptible and where terrestrial pyrite weathering occurs predominantly in bedrock fractures that are physically more removed from atmospheric O2. To better define the transition from a Proterozoic to a modern-like weathering regime, here we present new measurements from twelve marine evaporite basins spanning the Phanerozoic. These data display a step-like transition in the triple oxygen isotope composition of evaporite sulphate during the mid-Paleozoic (420 to 387.7 million years ago). We propose that the evolution of early root systems deepened the locus of pyrite oxidation and reduced the incorporation of O2 into sulphate. Further, the early Devonian proliferation of land plants increased terrestrial organic carbon burial, releasing free oxygen that fueled increased redox recycling of soil-bound iron and resulted in the final rise in pO2 to modern-like levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信