IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Shichao Huang, Haotian Guo, Pengfei Xia, Hongcan Sun, Changgui Lu, Yuge Feng, Jing Zhu, Cai Liang, Shuhong Xu, Chunlei Wang
{"title":"Integrated device of luminescent solar concentrators and electrochromic supercapacitors for self-powered smart window and display","authors":"Shichao Huang, Haotian Guo, Pengfei Xia, Hongcan Sun, Changgui Lu, Yuge Feng, Jing Zhu, Cai Liang, Shuhong Xu, Chunlei Wang","doi":"10.1038/s41467-025-57369-6","DOIUrl":null,"url":null,"abstract":"<p>Luminescent solar concentrators are translucent photovoltaic modules potentially used for building window. To store the energy generated by them, a separate energy storage module and voltage regulator module are required, but it is clear that this pairing is unwieldy for application. To address this problem, we propose a “face-to-face” tandem integration of luminescent solar concentrators and electrochromic supercapacitors. In this case, the separated energy storage module and voltage regulator module are not required, since the electric energy produced by concentrators under sunlight can be directly stored by the supercapacitors with matched voltage window. The charged energy storage module can be used to supply low-power devices. Moreover, electrochromic supercapacitors exhibit adjustable average visible transmission under different energy storage state, making the integrated device interesting for self-powered electrochromic smart windows or display devices. As an example, a self-powered information instruction display is prepared, and text messages could be clearly and rapidly displayed in a controllable manner. The integrated device capable of photovoltaic conversion, energy storage, and electrochromism is a promising alternative for smart windows.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"52 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57369-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

发光太阳能聚光器是一种半透明光电模块,可用于建筑窗户。要存储其产生的能量,需要单独的储能模块和稳压模块,但这种搭配显然不便于应用。为了解决这个问题,我们提出了一种 "面对面 "串联集成发光太阳能聚光器和电致变色超级电容器的方案。在这种情况下,不需要分离式储能模块和稳压模块,因为聚光器在阳光下产生的电能可直接由具有匹配电压窗口的超级电容器储存。带电的储能模块可用于为低功耗设备供电。此外,电致变色超级电容器在不同的储能状态下表现出可调的平均可见光透射率,这使得该集成器件可用于自供电电致变色智能窗户或显示设备。举例来说,自供电的信息指示显示器可以以可控的方式清晰、快速地显示文本信息。这种集光电转换、能量存储和电致变色功能于一体的集成装置是智能窗户的一种很有前途的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrated device of luminescent solar concentrators and electrochromic supercapacitors for self-powered smart window and display

Integrated device of luminescent solar concentrators and electrochromic supercapacitors for self-powered smart window and display

Luminescent solar concentrators are translucent photovoltaic modules potentially used for building window. To store the energy generated by them, a separate energy storage module and voltage regulator module are required, but it is clear that this pairing is unwieldy for application. To address this problem, we propose a “face-to-face” tandem integration of luminescent solar concentrators and electrochromic supercapacitors. In this case, the separated energy storage module and voltage regulator module are not required, since the electric energy produced by concentrators under sunlight can be directly stored by the supercapacitors with matched voltage window. The charged energy storage module can be used to supply low-power devices. Moreover, electrochromic supercapacitors exhibit adjustable average visible transmission under different energy storage state, making the integrated device interesting for self-powered electrochromic smart windows or display devices. As an example, a self-powered information instruction display is prepared, and text messages could be clearly and rapidly displayed in a controllable manner. The integrated device capable of photovoltaic conversion, energy storage, and electrochromism is a promising alternative for smart windows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信