使用大型语言模型对气候声明进行自动事实核查。

npj climate action Pub Date : 2025-01-01 Epub Date: 2025-02-25 DOI:10.1038/s44168-025-00215-8
Markus Leippold, Saeid Ashraf Vaghefi, Dominik Stammbach, Veruska Muccione, Julia Bingler, Jingwei Ni, Chiara Colesanti Senni, Tobias Wekhof, Tobias Schimanski, Glen Gostlow, Tingyu Yu, Juerg Luterbacher, Christian Huggel
{"title":"使用大型语言模型对气候声明进行自动事实核查。","authors":"Markus Leippold, Saeid Ashraf Vaghefi, Dominik Stammbach, Veruska Muccione, Julia Bingler, Jingwei Ni, Chiara Colesanti Senni, Tobias Wekhof, Tobias Schimanski, Glen Gostlow, Tingyu Yu, Juerg Luterbacher, Christian Huggel","doi":"10.1038/s44168-025-00215-8","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of true versus false climate information in the digital age is critical. Misinformation can significantly affect public understanding and policymaking. Automated fact-checking seeks to validate claims against trustworthy factual data. This study tackles the challenge of fact-checking climate claims by leveraging the currently most capable Large Language Models (LLMs). To this end, we introduce Climinator, an acronym for CLImate Mediator for INformed Analysis and Transparent Objective Reasoning. It significantly boosts the performance of automated fact-checking by integrating authoritative, up-to-date sources within a novel debating framework. This framework provides a trustworthy and context-aware analysis incorporating multiple scientific viewpoints. Climinator helps identify misinformation in real time and facilitates informed dialog on climate change, highlighting AI's role in environmental discussions and policy with reliable data.</p>","PeriodicalId":519998,"journal":{"name":"npj climate action","volume":"4 1","pages":"17"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860206/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated fact-checking of climate claims with large language models.\",\"authors\":\"Markus Leippold, Saeid Ashraf Vaghefi, Dominik Stammbach, Veruska Muccione, Julia Bingler, Jingwei Ni, Chiara Colesanti Senni, Tobias Wekhof, Tobias Schimanski, Glen Gostlow, Tingyu Yu, Juerg Luterbacher, Christian Huggel\",\"doi\":\"10.1038/s44168-025-00215-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate identification of true versus false climate information in the digital age is critical. Misinformation can significantly affect public understanding and policymaking. Automated fact-checking seeks to validate claims against trustworthy factual data. This study tackles the challenge of fact-checking climate claims by leveraging the currently most capable Large Language Models (LLMs). To this end, we introduce Climinator, an acronym for CLImate Mediator for INformed Analysis and Transparent Objective Reasoning. It significantly boosts the performance of automated fact-checking by integrating authoritative, up-to-date sources within a novel debating framework. This framework provides a trustworthy and context-aware analysis incorporating multiple scientific viewpoints. Climinator helps identify misinformation in real time and facilitates informed dialog on climate change, highlighting AI's role in environmental discussions and policy with reliable data.</p>\",\"PeriodicalId\":519998,\"journal\":{\"name\":\"npj climate action\",\"volume\":\"4 1\",\"pages\":\"17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860206/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj climate action\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44168-025-00215-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj climate action","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44168-025-00215-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在数字时代,准确识别真假气候信息至关重要。错误信息会严重影响公众理解和政策制定。自动事实核查的目的是根据可信的事实数据验证声明。本研究通过利用目前最有能力的大型语言模型(LLMs)来应对气候声明事实核查的挑战。为此,我们引入了 Climinator,它是 CLImate Mediator for INformed Analysis and Transparent Objective Reasoning 的缩写。它通过将权威的最新资料来源整合到一个新颖的辩论框架中,大大提高了自动事实检查的性能。该框架提供了一种包含多种科学观点的值得信赖的上下文感知分析。Climinator 可帮助实时识别错误信息,促进有关气候变化的知情对话,通过可靠的数据突出人工智能在环境讨论和政策中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated fact-checking of climate claims with large language models.

Accurate identification of true versus false climate information in the digital age is critical. Misinformation can significantly affect public understanding and policymaking. Automated fact-checking seeks to validate claims against trustworthy factual data. This study tackles the challenge of fact-checking climate claims by leveraging the currently most capable Large Language Models (LLMs). To this end, we introduce Climinator, an acronym for CLImate Mediator for INformed Analysis and Transparent Objective Reasoning. It significantly boosts the performance of automated fact-checking by integrating authoritative, up-to-date sources within a novel debating framework. This framework provides a trustworthy and context-aware analysis incorporating multiple scientific viewpoints. Climinator helps identify misinformation in real time and facilitates informed dialog on climate change, highlighting AI's role in environmental discussions and policy with reliable data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信