Markus Leippold, Saeid Ashraf Vaghefi, Dominik Stammbach, Veruska Muccione, Julia Bingler, Jingwei Ni, Chiara Colesanti Senni, Tobias Wekhof, Tobias Schimanski, Glen Gostlow, Tingyu Yu, Juerg Luterbacher, Christian Huggel
{"title":"使用大型语言模型对气候声明进行自动事实核查。","authors":"Markus Leippold, Saeid Ashraf Vaghefi, Dominik Stammbach, Veruska Muccione, Julia Bingler, Jingwei Ni, Chiara Colesanti Senni, Tobias Wekhof, Tobias Schimanski, Glen Gostlow, Tingyu Yu, Juerg Luterbacher, Christian Huggel","doi":"10.1038/s44168-025-00215-8","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of true versus false climate information in the digital age is critical. Misinformation can significantly affect public understanding and policymaking. Automated fact-checking seeks to validate claims against trustworthy factual data. This study tackles the challenge of fact-checking climate claims by leveraging the currently most capable Large Language Models (LLMs). To this end, we introduce Climinator, an acronym for CLImate Mediator for INformed Analysis and Transparent Objective Reasoning. It significantly boosts the performance of automated fact-checking by integrating authoritative, up-to-date sources within a novel debating framework. This framework provides a trustworthy and context-aware analysis incorporating multiple scientific viewpoints. Climinator helps identify misinformation in real time and facilitates informed dialog on climate change, highlighting AI's role in environmental discussions and policy with reliable data.</p>","PeriodicalId":519998,"journal":{"name":"npj climate action","volume":"4 1","pages":"17"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860206/pdf/","citationCount":"0","resultStr":"{\"title\":\"Automated fact-checking of climate claims with large language models.\",\"authors\":\"Markus Leippold, Saeid Ashraf Vaghefi, Dominik Stammbach, Veruska Muccione, Julia Bingler, Jingwei Ni, Chiara Colesanti Senni, Tobias Wekhof, Tobias Schimanski, Glen Gostlow, Tingyu Yu, Juerg Luterbacher, Christian Huggel\",\"doi\":\"10.1038/s44168-025-00215-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate identification of true versus false climate information in the digital age is critical. Misinformation can significantly affect public understanding and policymaking. Automated fact-checking seeks to validate claims against trustworthy factual data. This study tackles the challenge of fact-checking climate claims by leveraging the currently most capable Large Language Models (LLMs). To this end, we introduce Climinator, an acronym for CLImate Mediator for INformed Analysis and Transparent Objective Reasoning. It significantly boosts the performance of automated fact-checking by integrating authoritative, up-to-date sources within a novel debating framework. This framework provides a trustworthy and context-aware analysis incorporating multiple scientific viewpoints. Climinator helps identify misinformation in real time and facilitates informed dialog on climate change, highlighting AI's role in environmental discussions and policy with reliable data.</p>\",\"PeriodicalId\":519998,\"journal\":{\"name\":\"npj climate action\",\"volume\":\"4 1\",\"pages\":\"17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11860206/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj climate action\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44168-025-00215-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj climate action","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44168-025-00215-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在数字时代,准确识别真假气候信息至关重要。错误信息会严重影响公众理解和政策制定。自动事实核查的目的是根据可信的事实数据验证声明。本研究通过利用目前最有能力的大型语言模型(LLMs)来应对气候声明事实核查的挑战。为此,我们引入了 Climinator,它是 CLImate Mediator for INformed Analysis and Transparent Objective Reasoning 的缩写。它通过将权威的最新资料来源整合到一个新颖的辩论框架中,大大提高了自动事实检查的性能。该框架提供了一种包含多种科学观点的值得信赖的上下文感知分析。Climinator 可帮助实时识别错误信息,促进有关气候变化的知情对话,通过可靠的数据突出人工智能在环境讨论和政策中的作用。
Automated fact-checking of climate claims with large language models.
Accurate identification of true versus false climate information in the digital age is critical. Misinformation can significantly affect public understanding and policymaking. Automated fact-checking seeks to validate claims against trustworthy factual data. This study tackles the challenge of fact-checking climate claims by leveraging the currently most capable Large Language Models (LLMs). To this end, we introduce Climinator, an acronym for CLImate Mediator for INformed Analysis and Transparent Objective Reasoning. It significantly boosts the performance of automated fact-checking by integrating authoritative, up-to-date sources within a novel debating framework. This framework provides a trustworthy and context-aware analysis incorporating multiple scientific viewpoints. Climinator helps identify misinformation in real time and facilitates informed dialog on climate change, highlighting AI's role in environmental discussions and policy with reliable data.