通过分子动力学研究,虚拟透视番荔枝碱对癌症预防和治疗的作用。

In silico pharmacology Pub Date : 2025-02-25 eCollection Date: 2025-01-01 DOI:10.1007/s40203-025-00315-7
Vikas Sharma, Arti Gupta, Anshul Singh, Shivani Tyagi, Hrithika Panday, Saurabh Srivastava, Sathvik Belagodu Sridhar, Safia Obaidur Rab, Sandeep Kumar Shukla
{"title":"通过分子动力学研究,虚拟透视番荔枝碱对癌症预防和治疗的作用。","authors":"Vikas Sharma, Arti Gupta, Anshul Singh, Shivani Tyagi, Hrithika Panday, Saurabh Srivastava, Sathvik Belagodu Sridhar, Safia Obaidur Rab, Sandeep Kumar Shukla","doi":"10.1007/s40203-025-00315-7","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer prevention involves resisting cancer development at initial stages, retarding angiogenesis and initiating cancer cell apoptosis. Through the use of virtual screening, binding free energy calculations, and molecular dynamics simulations, we were able to identify compounds with potential anticancer activity.\"During the virtual screening process, compounds with promising drug-like properties were chosen using the Lipinski rule of five, and their binding affinities were evaluated by docking studies. In-silico activity of six different phytochemicals against established cancer specific proteins (NF-kB, p53, VEGF, BAX/BCl-2, TNF-alpha) were performed out of which p53, VEGF, BCl-2 has shown significant results. Sanguinarine has shown good docking score of -9.0 with VEGF and - 8.8 with Bcl-2 receptor and has been selected for molecular dynamics simulation. The results of Molecular Dynamics Simulations (MD) studies showed that RMSD and RMSF values of sanguinarine within an acceptable global minima (3-5.5 Å) for p53, VEGF, BAX/BCl-2. The computational models employed in this study produced important insights into the molecular mechanisms via which Sanguinarine prevents cancer by acting against p53, VEGF, and BCl-2 and by blocking the angiogenic, apoptotic, and proliferative pathways involved in the formation of cancer. The results suggest that the pharmacological activity of the selected phytomolecule (sanguinarine) is a promising avenue for cancer prevention.</p><p><strong>Graphical abstract: </strong></p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"13 1","pages":"33"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861490/pdf/","citationCount":"0","resultStr":"{\"title\":\"Virtual perspectives of sanguinarine on cancer prevention and treatment through molecular dynamic study.\",\"authors\":\"Vikas Sharma, Arti Gupta, Anshul Singh, Shivani Tyagi, Hrithika Panday, Saurabh Srivastava, Sathvik Belagodu Sridhar, Safia Obaidur Rab, Sandeep Kumar Shukla\",\"doi\":\"10.1007/s40203-025-00315-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer prevention involves resisting cancer development at initial stages, retarding angiogenesis and initiating cancer cell apoptosis. Through the use of virtual screening, binding free energy calculations, and molecular dynamics simulations, we were able to identify compounds with potential anticancer activity.\\\"During the virtual screening process, compounds with promising drug-like properties were chosen using the Lipinski rule of five, and their binding affinities were evaluated by docking studies. In-silico activity of six different phytochemicals against established cancer specific proteins (NF-kB, p53, VEGF, BAX/BCl-2, TNF-alpha) were performed out of which p53, VEGF, BCl-2 has shown significant results. Sanguinarine has shown good docking score of -9.0 with VEGF and - 8.8 with Bcl-2 receptor and has been selected for molecular dynamics simulation. The results of Molecular Dynamics Simulations (MD) studies showed that RMSD and RMSF values of sanguinarine within an acceptable global minima (3-5.5 Å) for p53, VEGF, BAX/BCl-2. The computational models employed in this study produced important insights into the molecular mechanisms via which Sanguinarine prevents cancer by acting against p53, VEGF, and BCl-2 and by blocking the angiogenic, apoptotic, and proliferative pathways involved in the formation of cancer. The results suggest that the pharmacological activity of the selected phytomolecule (sanguinarine) is a promising avenue for cancer prevention.</p><p><strong>Graphical abstract: </strong></p>\",\"PeriodicalId\":94038,\"journal\":{\"name\":\"In silico pharmacology\",\"volume\":\"13 1\",\"pages\":\"33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861490/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"In silico pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40203-025-00315-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-025-00315-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癌症预防包括在早期阶段抵抗癌症的发展,延缓血管生成和启动癌细胞凋亡。通过虚拟筛选、结合自由能计算和分子动力学模拟,我们能够识别出具有潜在抗癌活性的化合物。“在虚拟筛选过程中,使用Lipinski五法则选择具有有希望的药物样特性的化合物,并通过对接研究评估其结合亲和力。六种不同的植物化学物质对已建立的癌症特异性蛋白(NF-kB, p53, VEGF, BAX/BCl-2, tnf - α)的硅活性进行了研究,其中p53, VEGF, BCl-2显示出显著的结果。血桂碱与VEGF的对接评分为-9.0分,与Bcl-2受体的对接评分为- 8.8分,并被选择用于分子动力学模拟。分子动力学模拟(MD)研究的结果表明,对于p53、VEGF、BAX/BCl-2,血氨酸的RMSD和RMSF值在一个可接受的全局最小值(3-5.5 Å)内。本研究中使用的计算模型对Sanguinarine通过抑制p53、VEGF和BCl-2以及阻断与癌症形成有关的血管生成、凋亡和增殖途径来预防癌症的分子机制产生了重要的见解。结果表明,所选择的植物分子(血根碱)的药理活性是一种有希望的癌症预防途径。图形化的简介:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Virtual perspectives of sanguinarine on cancer prevention and treatment through molecular dynamic study.

Cancer prevention involves resisting cancer development at initial stages, retarding angiogenesis and initiating cancer cell apoptosis. Through the use of virtual screening, binding free energy calculations, and molecular dynamics simulations, we were able to identify compounds with potential anticancer activity."During the virtual screening process, compounds with promising drug-like properties were chosen using the Lipinski rule of five, and their binding affinities were evaluated by docking studies. In-silico activity of six different phytochemicals against established cancer specific proteins (NF-kB, p53, VEGF, BAX/BCl-2, TNF-alpha) were performed out of which p53, VEGF, BCl-2 has shown significant results. Sanguinarine has shown good docking score of -9.0 with VEGF and - 8.8 with Bcl-2 receptor and has been selected for molecular dynamics simulation. The results of Molecular Dynamics Simulations (MD) studies showed that RMSD and RMSF values of sanguinarine within an acceptable global minima (3-5.5 Å) for p53, VEGF, BAX/BCl-2. The computational models employed in this study produced important insights into the molecular mechanisms via which Sanguinarine prevents cancer by acting against p53, VEGF, and BCl-2 and by blocking the angiogenic, apoptotic, and proliferative pathways involved in the formation of cancer. The results suggest that the pharmacological activity of the selected phytomolecule (sanguinarine) is a promising avenue for cancer prevention.

Graphical abstract:

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信