多巴胺研究中影响TDRL模型的可怕细节。

IF 16.7 1区 心理学 Q1 BEHAVIORAL SCIENCES
Trends in Cognitive Sciences Pub Date : 2025-05-01 Epub Date: 2025-02-26 DOI:10.1016/j.tics.2025.02.001
Zhewei Zhang, Kauê M Costa, Angela J Langdon, Geoffrey Schoenbaum
{"title":"多巴胺研究中影响TDRL模型的可怕细节。","authors":"Zhewei Zhang, Kauê M Costa, Angela J Langdon, Geoffrey Schoenbaum","doi":"10.1016/j.tics.2025.02.001","DOIUrl":null,"url":null,"abstract":"<p><p>Over recent decades, temporal difference reinforcement learning (TDRL) models have successfully explained much dopamine (DA) activity. This success has invited heightened scrutiny of late, with many studies challenging the validity of TDRL models of DA function. Yet, when evaluating the validity of these models, the devil is truly in the details. TDRL is a broad class of algorithms sharing core ideas but differing greatly in implementation and predictions. Thus, it is important to identify the defining aspects of the TDRL framework being tested and to use state spaces and model architectures that capture the known complexity of the behavioral representations and neural systems involved. Here, we discuss several examples that illustrate the importance of these considerations.</p>","PeriodicalId":49417,"journal":{"name":"Trends in Cognitive Sciences","volume":" ","pages":"434-447"},"PeriodicalIF":16.7000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058390/pdf/","citationCount":"0","resultStr":"{\"title\":\"The devilish details affecting TDRL models in dopamine research.\",\"authors\":\"Zhewei Zhang, Kauê M Costa, Angela J Langdon, Geoffrey Schoenbaum\",\"doi\":\"10.1016/j.tics.2025.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over recent decades, temporal difference reinforcement learning (TDRL) models have successfully explained much dopamine (DA) activity. This success has invited heightened scrutiny of late, with many studies challenging the validity of TDRL models of DA function. Yet, when evaluating the validity of these models, the devil is truly in the details. TDRL is a broad class of algorithms sharing core ideas but differing greatly in implementation and predictions. Thus, it is important to identify the defining aspects of the TDRL framework being tested and to use state spaces and model architectures that capture the known complexity of the behavioral representations and neural systems involved. Here, we discuss several examples that illustrate the importance of these considerations.</p>\",\"PeriodicalId\":49417,\"journal\":{\"name\":\"Trends in Cognitive Sciences\",\"volume\":\" \",\"pages\":\"434-447\"},\"PeriodicalIF\":16.7000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12058390/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Cognitive Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tics.2025.02.001\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cognitive Sciences","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.tics.2025.02.001","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,时间差异强化学习(TDRL)模型已经成功地解释了许多多巴胺(DA)活动。这一成功引起了最近的高度关注,许多研究挑战了TDRL模型的DA功能的有效性。然而,在评估这些模型的有效性时,真正的问题在于细节。TDRL是一类广泛的算法,它们共享核心思想,但在实现和预测方面存在很大差异。因此,重要的是要确定正在测试的TDRL框架的定义方面,并使用状态空间和模型体系结构来捕获所涉及的行为表示和神经系统的已知复杂性。在这里,我们讨论几个例子来说明这些考虑的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The devilish details affecting TDRL models in dopamine research.

Over recent decades, temporal difference reinforcement learning (TDRL) models have successfully explained much dopamine (DA) activity. This success has invited heightened scrutiny of late, with many studies challenging the validity of TDRL models of DA function. Yet, when evaluating the validity of these models, the devil is truly in the details. TDRL is a broad class of algorithms sharing core ideas but differing greatly in implementation and predictions. Thus, it is important to identify the defining aspects of the TDRL framework being tested and to use state spaces and model architectures that capture the known complexity of the behavioral representations and neural systems involved. Here, we discuss several examples that illustrate the importance of these considerations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Cognitive Sciences
Trends in Cognitive Sciences 医学-行为科学
CiteScore
27.90
自引率
1.50%
发文量
156
审稿时长
6-12 weeks
期刊介绍: Essential reading for those working directly in the cognitive sciences or in related specialist areas, Trends in Cognitive Sciences provides an instant overview of current thinking for scientists, students and teachers who want to keep up with the latest developments in the cognitive sciences. The journal brings together research in psychology, artificial intelligence, linguistics, philosophy, computer science and neuroscience. Trends in Cognitive Sciences provides a platform for the interaction of these disciplines and the evolution of cognitive science as an independent field of study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信