比较创建全国随机twitter用户样本的方法。

IF 2.3 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Social Network Analysis and Mining Pub Date : 2024-01-01 Epub Date: 2024-08-14 DOI:10.1007/s13278-024-01327-5
Meysam Alizadeh, Darya Zare, Zeynab Samei, Mohammadamin Alizadeh, Mael Kubli, Mohammadhadi Aliahmadi, Sarvenaz Ebrahimi, Fabrizio Gilardi
{"title":"比较创建全国随机twitter用户样本的方法。","authors":"Meysam Alizadeh, Darya Zare, Zeynab Samei, Mohammadamin Alizadeh, Mael Kubli, Mohammadhadi Aliahmadi, Sarvenaz Ebrahimi, Fabrizio Gilardi","doi":"10.1007/s13278-024-01327-5","DOIUrl":null,"url":null,"abstract":"<p><p>Twitter data has been widely used by researchers across various social and computer science disciplines. A common aim when working with Twitter data is the construction of a random sample of users from a given country. However, while several methods have been proposed in the literature, their comparative performance is mostly unexplored. In this paper, we implement four common methods to create a random sample of Twitter users in the US: <i>1% Stream</i>, <i>Bounding Box</i>, <i>Location Query</i>, and <i>Language Query</i>. Then, we compare these methods according to their tweet- and user-level metrics as well as their accuracy in estimating the US population. Our results show that users collected by the <i>1% Stream</i> method tend to have more tweets, tweets per day, followers, and friends, a fewer number of likes, are younger accounts, and include more male users compared to the other three methods. Moreover, it achieves the minimum error in estimating the US population. However, the <i>1% Stream</i> method is time-consuming, cannot be used for the past time frames, and is not suitable when user engagement is part of the study. In situation where these three drawbacks are important, our results support the <i>Bounding Box</i> method as the second-best method.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at. 10.1007/s13278-024-01327-5.</p>","PeriodicalId":21842,"journal":{"name":"Social Network Analysis and Mining","volume":"14 1","pages":"160"},"PeriodicalIF":2.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861139/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparing methods for creating a national random sample of twitter users.\",\"authors\":\"Meysam Alizadeh, Darya Zare, Zeynab Samei, Mohammadamin Alizadeh, Mael Kubli, Mohammadhadi Aliahmadi, Sarvenaz Ebrahimi, Fabrizio Gilardi\",\"doi\":\"10.1007/s13278-024-01327-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Twitter data has been widely used by researchers across various social and computer science disciplines. A common aim when working with Twitter data is the construction of a random sample of users from a given country. However, while several methods have been proposed in the literature, their comparative performance is mostly unexplored. In this paper, we implement four common methods to create a random sample of Twitter users in the US: <i>1% Stream</i>, <i>Bounding Box</i>, <i>Location Query</i>, and <i>Language Query</i>. Then, we compare these methods according to their tweet- and user-level metrics as well as their accuracy in estimating the US population. Our results show that users collected by the <i>1% Stream</i> method tend to have more tweets, tweets per day, followers, and friends, a fewer number of likes, are younger accounts, and include more male users compared to the other three methods. Moreover, it achieves the minimum error in estimating the US population. However, the <i>1% Stream</i> method is time-consuming, cannot be used for the past time frames, and is not suitable when user engagement is part of the study. In situation where these three drawbacks are important, our results support the <i>Bounding Box</i> method as the second-best method.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at. 10.1007/s13278-024-01327-5.</p>\",\"PeriodicalId\":21842,\"journal\":{\"name\":\"Social Network Analysis and Mining\",\"volume\":\"14 1\",\"pages\":\"160\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861139/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Social Network Analysis and Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s13278-024-01327-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/8/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Network Analysis and Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s13278-024-01327-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

Twitter数据已被各种社会和计算机科学学科的研究人员广泛使用。在处理Twitter数据时,一个常见的目标是构建来自给定国家的随机用户样本。然而,虽然文献中提出了几种方法,但它们的比较性能大多未被探索。在本文中,我们实现了四种常见的方法来创建美国Twitter用户的随机样本:1%流、边界框、位置查询和语言查询。然后,我们根据他们的推文和用户级指标以及他们估计美国人口的准确性来比较这些方法。我们的研究结果表明,与其他三种方法相比,1%流方法收集的用户往往有更多的推文、每天的推文、关注者和朋友,喜欢的数量较少,是年轻的账户,并且包括更多的男性用户。此外,它在估计美国人口方面达到了最小的误差。然而,1%流方法是耗时的,不能用于过去的时间框架,并且不适合当用户参与是研究的一部分时。在这三个缺点很重要的情况下,我们的结果支持Bounding Box方法作为第二好的方法。补充资料:在线版本包含补充资料,可在。10.1007 / s13278 - 024 - 01327 - 5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing methods for creating a national random sample of twitter users.

Twitter data has been widely used by researchers across various social and computer science disciplines. A common aim when working with Twitter data is the construction of a random sample of users from a given country. However, while several methods have been proposed in the literature, their comparative performance is mostly unexplored. In this paper, we implement four common methods to create a random sample of Twitter users in the US: 1% Stream, Bounding Box, Location Query, and Language Query. Then, we compare these methods according to their tweet- and user-level metrics as well as their accuracy in estimating the US population. Our results show that users collected by the 1% Stream method tend to have more tweets, tweets per day, followers, and friends, a fewer number of likes, are younger accounts, and include more male users compared to the other three methods. Moreover, it achieves the minimum error in estimating the US population. However, the 1% Stream method is time-consuming, cannot be used for the past time frames, and is not suitable when user engagement is part of the study. In situation where these three drawbacks are important, our results support the Bounding Box method as the second-best method.

Supplementary information: The online version contains supplementary material available at. 10.1007/s13278-024-01327-5.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Social Network Analysis and Mining
Social Network Analysis and Mining COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
5.70
自引率
14.30%
发文量
141
期刊介绍: Social Network Analysis and Mining (SNAM) is a multidisciplinary journal serving researchers and practitioners in academia and industry. It is the main venue for a wide range of researchers and readers from computer science, network science, social sciences, mathematical sciences, medical and biological sciences, financial, management and political sciences. We solicit experimental and theoretical work on social network analysis and mining using a wide range of techniques from social sciences, mathematics, statistics, physics, network science and computer science. The main areas covered by SNAM include: (1) data mining advances on the discovery and analysis of communities, personalization for solitary activities (e.g. search) and social activities (e.g. discovery of potential friends), the analysis of user behavior in open forums (e.g. conventional sites, blogs and forums) and in commercial platforms (e.g. e-auctions), and the associated security and privacy-preservation challenges; (2) social network modeling, construction of scalable and customizable social network infrastructure, identification and discovery of complex, dynamics, growth, and evolution patterns using machine learning and data mining approaches or multi-agent based simulation; (3) social network analysis and mining for open source intelligence and homeland security. Papers should elaborate on data mining and machine learning or related methods, issues associated to data preparation and pattern interpretation, both for conventional data (usage logs, query logs, document collections) and for multimedia data (pictures and their annotations, multi-channel usage data). Topics include but are not limited to: Applications of social network in business engineering, scientific and medical domains, homeland security, terrorism and criminology, fraud detection, public sector, politics, and case studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信