Social Network Analysis and Mining

Social Network Analysis and Mining
影响因子:
2.3
ISSN:
print: 1869-5450
on-line: 1869-5469
研究领域:
COMPUTER SCIENCE, INFORMATION SYSTEMS
自引率:
14.30%
Gold OA文章占比:
23.36%
原创研究文献占比:
91.98%
SCI收录类型:
Emerging Sources Citation Index (ESCI) || Scopus (CiteScore)
期刊介绍英文:
Social Network Analysis and Mining (SNAM) is a multidisciplinary journal serving researchers and practitioners in academia and industry. It is the main venue for a wide range of researchers and readers from computer science, network science, social sciences, mathematical sciences, medical and biological sciences, financial, management and political sciences. We solicit experimental and theoretical work on social network analysis and mining using a wide range of techniques from social sciences, mathematics, statistics, physics, network science and computer science. The main areas covered by SNAM include: (1) data mining advances on the discovery and analysis of communities, personalization for solitary activities (e.g. search) and social activities (e.g. discovery of potential friends), the analysis of user behavior in open forums (e.g. conventional sites, blogs and forums) and in commercial platforms (e.g. e-auctions), and the associated security and privacy-preservation challenges; (2) social network modeling, construction of scalable and customizable social network infrastructure, identification and discovery of complex, dynamics, growth, and evolution patterns using machine learning and data mining approaches or multi-agent based simulation; (3) social network analysis and mining for open source intelligence and homeland security. Papers should elaborate on data mining and machine learning or related methods, issues associated to data preparation and pattern interpretation, both for conventional data (usage logs, query logs, document collections) and for multimedia data (pictures and their annotations, multi-channel usage data). Topics include but are not limited to: Applications of social network in business engineering, scientific and medical domains, homeland security, terrorism and criminology, fraud detection, public sector, politics, and case studies.
CiteScore:
CiteScoreSJRSNIPCiteScore排名
5.70.6670.999
学科
排名
百分位
大类:Social Sciences
小类:Communication
61 / 511
88%
大类:Engineering
小类:Media Technology
15 / 63
76%
大类:Computer Science
小类:Information Systems
129 / 394
67%
大类:Computer Science
小类:Computer Science Applications
274 / 817
66%
大类:Computer Science
小类:Human-Computer Interaction
68 / 145
53%
发文信息
WOS期刊分区
学科分类
Q3COMPUTER SCIENCE, INFORMATION SYSTEMS
历年影响因子
2022年2.8000
2023年2.3000
历年发表
2012年46
2013年57
2014年87
2015年80
2016年109
2017年64
2018年68
2019年71
2020年93
2021年141
2022年141
投稿信息
出版国家(地区):
Austria
初审时长:
6 days
出版商:
Springer Nature

Social Network Analysis and Mining - 最新文献

Correction: Public sentiment toward renewable energy in Morocco: opinion mining using a rule-based approach

Pub Date : 2024-01-13 DOI: 10.1007/s13278-023-01191-9 M. Kasri, Anas El-Ansari, Mohamed El Fissaoui, Badreddine Cherkaoui, Marouane Birjali, A. Beni-Hssane

Do users adopt extremist beliefs from exposure to hate subreddits?

Pub Date : 2024-01-11 DOI: 10.1007/s13278-023-01184-8 Matheus Schmitz, Goran Muric, Daniel Hickey, Keith Burghardt

Analyzing online public opinion on Thailand-China high-speed train and Laos-China railway mega-projects using advanced machine learning for sentiment analysis

Pub Date : 2023-12-18 DOI: 10.1007/s13278-023-01168-8 Manussawee Nokkaew, K. Nongpong, Tapanan Yeophantong, Pattravadee Ploykitikoon, W. Arjharn, A. Siritaratiwat, Sorawit Narkglom, W. Wongsinlatam, T. Remsungnen, A. Namvong, C. Surawanitkun
查看全部
免责声明:
本页显示期刊或杂志信息,仅供参考学习,不是任何期刊杂志官网,不涉及出版事务,特此申明。如需出版一切事务需要用户自己向出版商联系核实。若本页展示内容有任何问题,请联系我们,邮箱:info@booksci.cn,我们会认真核实处理。
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信