Zhe Du, Pujing Zhang, Xiaodong Huang, Zhigang Hu, Gege Yang, Mengyang Xi, Dechun Liu
{"title":"用于污点规范化的深度监督两级生成式对抗网络。","authors":"Zhe Du, Pujing Zhang, Xiaodong Huang, Zhigang Hu, Gege Yang, Mengyang Xi, Dechun Liu","doi":"10.1038/s41598-025-91587-8","DOIUrl":null,"url":null,"abstract":"<p><p>The color variations present in histopathological images pose a significant challenge to computational pathology and, consequently, negatively affect the performance of certain pathological image analysis methods, especially those based on deep learning techniques. To date, several methods have been proposed to mitigate this issue. However, these methods either produce images with low texture retention, perform poorly when trained with small datasets, or have low generalization capabilities. In this paper, we propose a Deep Supervised Two-stage Generative Adversarial Network known as DSTGAN for stain-normalization. Specifically, we introduce deep supervision to generative adversarial networks in an innovative way to enhance the learning capacity of the model, benefiting from different model regularization methods. To make fuller use of source domain images for training the model, we drew upon semi-supervised concepts to design a novel two-stage staining strategy. Additionally, we construct a generator that can capture long-distance semantic relationships, enabling the model to retain more abundant texture information in the generated images. In the evaluation of the quality of generated images, we have achieved state-of-the-art performance on TUPAC-2016, MITOS-ATYPIA-14, ICIAR-BACH-2018 and MICCAI-16-GlaS datasets, improving the precision of classification and segmentation by 5.2% and 4.2%, respectively. Not only has our model significantly improved the quality of the stained images compared to existing stain normalization methods, but it also has a positive impact on the execution of downstream classification and segmentation tasks. Our method has further reduced the effect that staining differences have on computational pathology, thereby improving the accuracy of histopathological image analysis to some extent.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"7068"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868385/pdf/","citationCount":"0","resultStr":"{\"title\":\"Deeply supervised two stage generative adversarial network for stain normalization.\",\"authors\":\"Zhe Du, Pujing Zhang, Xiaodong Huang, Zhigang Hu, Gege Yang, Mengyang Xi, Dechun Liu\",\"doi\":\"10.1038/s41598-025-91587-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The color variations present in histopathological images pose a significant challenge to computational pathology and, consequently, negatively affect the performance of certain pathological image analysis methods, especially those based on deep learning techniques. To date, several methods have been proposed to mitigate this issue. However, these methods either produce images with low texture retention, perform poorly when trained with small datasets, or have low generalization capabilities. In this paper, we propose a Deep Supervised Two-stage Generative Adversarial Network known as DSTGAN for stain-normalization. Specifically, we introduce deep supervision to generative adversarial networks in an innovative way to enhance the learning capacity of the model, benefiting from different model regularization methods. To make fuller use of source domain images for training the model, we drew upon semi-supervised concepts to design a novel two-stage staining strategy. Additionally, we construct a generator that can capture long-distance semantic relationships, enabling the model to retain more abundant texture information in the generated images. In the evaluation of the quality of generated images, we have achieved state-of-the-art performance on TUPAC-2016, MITOS-ATYPIA-14, ICIAR-BACH-2018 and MICCAI-16-GlaS datasets, improving the precision of classification and segmentation by 5.2% and 4.2%, respectively. Not only has our model significantly improved the quality of the stained images compared to existing stain normalization methods, but it also has a positive impact on the execution of downstream classification and segmentation tasks. Our method has further reduced the effect that staining differences have on computational pathology, thereby improving the accuracy of histopathological image analysis to some extent.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"7068\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868385/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-91587-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91587-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Deeply supervised two stage generative adversarial network for stain normalization.
The color variations present in histopathological images pose a significant challenge to computational pathology and, consequently, negatively affect the performance of certain pathological image analysis methods, especially those based on deep learning techniques. To date, several methods have been proposed to mitigate this issue. However, these methods either produce images with low texture retention, perform poorly when trained with small datasets, or have low generalization capabilities. In this paper, we propose a Deep Supervised Two-stage Generative Adversarial Network known as DSTGAN for stain-normalization. Specifically, we introduce deep supervision to generative adversarial networks in an innovative way to enhance the learning capacity of the model, benefiting from different model regularization methods. To make fuller use of source domain images for training the model, we drew upon semi-supervised concepts to design a novel two-stage staining strategy. Additionally, we construct a generator that can capture long-distance semantic relationships, enabling the model to retain more abundant texture information in the generated images. In the evaluation of the quality of generated images, we have achieved state-of-the-art performance on TUPAC-2016, MITOS-ATYPIA-14, ICIAR-BACH-2018 and MICCAI-16-GlaS datasets, improving the precision of classification and segmentation by 5.2% and 4.2%, respectively. Not only has our model significantly improved the quality of the stained images compared to existing stain normalization methods, but it also has a positive impact on the execution of downstream classification and segmentation tasks. Our method has further reduced the effect that staining differences have on computational pathology, thereby improving the accuracy of histopathological image analysis to some extent.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.