Yao Tian, Andrea P Torres-Flores, Qi Shang, Hui Zhang, Anum Khursheed, Bogachan Tahirbegi, Patrick N Pallier, John H Viles
{"title":"p3 肽(Aβ17-40/42)会迅速形成淀粉样纤维,并与全长 Aβ 发生交叉融合。","authors":"Yao Tian, Andrea P Torres-Flores, Qi Shang, Hui Zhang, Anum Khursheed, Bogachan Tahirbegi, Patrick N Pallier, John H Viles","doi":"10.1038/s41467-025-57341-4","DOIUrl":null,"url":null,"abstract":"<p><p>The p3 peptides, Aβ<sub>17-40/42</sub>, are a common alternative cleavage product of the amyloid precursor protein, and are found in diffuse amyloid deposits of Alzheimer's and Down Syndrome brains. The p3 peptides have been mis-named 'non-amyloidogenic'. Here we show p3<sub>40/42</sub> peptides rapidly form amyloid fibrils, with kinetics dominated by secondary nucleation. Importantly, cross-seeding experiments, with full-length Aβ induces a strong nucleation between p3 and Aβ peptides. The cross-seeding interaction is highly specific, and occurs only when the C-terminal residues are matched. We have imaged membrane interactions with p3, and monitored Ca<sup>2+</sup> influx and cell viability with p3 peptide. Together this data suggests the N-terminal residues influence, but are not essential for, membrane disruption. Single particle analysis of TEM images indicates p3 peptides can form ring-like annular oligomers. Patch-clamp electrophysiology, shows p3<sub>42</sub> oligomers are capable of forming large ion-channels across cellular membranes. A role for p3 peptides in disease pathology should be considered as p3 peptides are cytotoxic and cross-seed Aβ fibril formation in vitro.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"2040"},"PeriodicalIF":15.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868391/pdf/","citationCount":"0","resultStr":"{\"title\":\"The p3 peptides (Aβ<sub>17-40/42</sub>) rapidly form amyloid fibrils that cross-seed with full-length Aβ.\",\"authors\":\"Yao Tian, Andrea P Torres-Flores, Qi Shang, Hui Zhang, Anum Khursheed, Bogachan Tahirbegi, Patrick N Pallier, John H Viles\",\"doi\":\"10.1038/s41467-025-57341-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The p3 peptides, Aβ<sub>17-40/42</sub>, are a common alternative cleavage product of the amyloid precursor protein, and are found in diffuse amyloid deposits of Alzheimer's and Down Syndrome brains. The p3 peptides have been mis-named 'non-amyloidogenic'. Here we show p3<sub>40/42</sub> peptides rapidly form amyloid fibrils, with kinetics dominated by secondary nucleation. Importantly, cross-seeding experiments, with full-length Aβ induces a strong nucleation between p3 and Aβ peptides. The cross-seeding interaction is highly specific, and occurs only when the C-terminal residues are matched. We have imaged membrane interactions with p3, and monitored Ca<sup>2+</sup> influx and cell viability with p3 peptide. Together this data suggests the N-terminal residues influence, but are not essential for, membrane disruption. Single particle analysis of TEM images indicates p3 peptides can form ring-like annular oligomers. Patch-clamp electrophysiology, shows p3<sub>42</sub> oligomers are capable of forming large ion-channels across cellular membranes. A role for p3 peptides in disease pathology should be considered as p3 peptides are cytotoxic and cross-seed Aβ fibril formation in vitro.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"2040\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868391/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57341-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57341-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
The p3 peptides (Aβ17-40/42) rapidly form amyloid fibrils that cross-seed with full-length Aβ.
The p3 peptides, Aβ17-40/42, are a common alternative cleavage product of the amyloid precursor protein, and are found in diffuse amyloid deposits of Alzheimer's and Down Syndrome brains. The p3 peptides have been mis-named 'non-amyloidogenic'. Here we show p340/42 peptides rapidly form amyloid fibrils, with kinetics dominated by secondary nucleation. Importantly, cross-seeding experiments, with full-length Aβ induces a strong nucleation between p3 and Aβ peptides. The cross-seeding interaction is highly specific, and occurs only when the C-terminal residues are matched. We have imaged membrane interactions with p3, and monitored Ca2+ influx and cell viability with p3 peptide. Together this data suggests the N-terminal residues influence, but are not essential for, membrane disruption. Single particle analysis of TEM images indicates p3 peptides can form ring-like annular oligomers. Patch-clamp electrophysiology, shows p342 oligomers are capable of forming large ion-channels across cellular membranes. A role for p3 peptides in disease pathology should be considered as p3 peptides are cytotoxic and cross-seed Aβ fibril formation in vitro.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.