{"title":"壳聚糖/三聚磷酸钠微乳增强胰岛素经肠淋巴组织的口服递送。","authors":"Zhengpeng Zhong, Fuping Wang, Xue Gong, Changfu Hu, Guobao Chen, Zhongmin Chen","doi":"10.1002/mabi.202400520","DOIUrl":null,"url":null,"abstract":"<p>Oral insulin delivery systems are currently being explored as the best alternative to subcutaneous injections, aiming to overcome gastrointestinal barriers and achieve efficient oral insulin delivery. This study presents a microemulsion delivery system that utilizes chitosan/sodium tripolyphosphate (CS/STPP) to enhance the stability of kernel-loaded insulin and increase bioavailability via intestinal absorption and lymphatic transport. The insulin/chitosan/sodium tripolyphosphate-microemulsion (Ins/CS/STPP-ME) is a particle size of (81.03 ± 7.19) nm and a polydispersity index (PDI) of (0.313 ± 0.013). Infrared spectroscopy confirms insulin encapsulation. Ins/CS/STPP-ME exhibits favorable stability and releasesproperties in gastrointestinal fluids, retaining a maximum of (53.076 ± 12.587)% insulin in a pepsin environment and (62.982 ± 13.105)% in a trypsin environment after 60 min. In vivo studies have demonstrated that the addition of CS/STPP to the internal phase of Ins/CS/STPP-ME results in a rapid onset of action and sustained hypoglycaemic effect in diabetic rats. Lymphatic blockade by cycloheximide verified Ins/CS/STPP-ME and its ability to cross the gut and enter the bloodstream via lymphatic transport. This work demonstrates that Ins/CS/STPP-ME can stabilize proteins in the gastrointestinal environment, facilitate lymphatic absorption, enhance bioavailability, and provide longer-lasting hypoglycemic effects, thus providing the possibility for oral biomacromolecule delivery.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":"25 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chitosan/Sodium Tripolyphosphate Microemulsion Enhanced Oral Insulin Delivery via Intestinal Lymphoid\",\"authors\":\"Zhengpeng Zhong, Fuping Wang, Xue Gong, Changfu Hu, Guobao Chen, Zhongmin Chen\",\"doi\":\"10.1002/mabi.202400520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oral insulin delivery systems are currently being explored as the best alternative to subcutaneous injections, aiming to overcome gastrointestinal barriers and achieve efficient oral insulin delivery. This study presents a microemulsion delivery system that utilizes chitosan/sodium tripolyphosphate (CS/STPP) to enhance the stability of kernel-loaded insulin and increase bioavailability via intestinal absorption and lymphatic transport. The insulin/chitosan/sodium tripolyphosphate-microemulsion (Ins/CS/STPP-ME) is a particle size of (81.03 ± 7.19) nm and a polydispersity index (PDI) of (0.313 ± 0.013). Infrared spectroscopy confirms insulin encapsulation. Ins/CS/STPP-ME exhibits favorable stability and releasesproperties in gastrointestinal fluids, retaining a maximum of (53.076 ± 12.587)% insulin in a pepsin environment and (62.982 ± 13.105)% in a trypsin environment after 60 min. In vivo studies have demonstrated that the addition of CS/STPP to the internal phase of Ins/CS/STPP-ME results in a rapid onset of action and sustained hypoglycaemic effect in diabetic rats. Lymphatic blockade by cycloheximide verified Ins/CS/STPP-ME and its ability to cross the gut and enter the bloodstream via lymphatic transport. This work demonstrates that Ins/CS/STPP-ME can stabilize proteins in the gastrointestinal environment, facilitate lymphatic absorption, enhance bioavailability, and provide longer-lasting hypoglycemic effects, thus providing the possibility for oral biomacromolecule delivery.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":\"25 4\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400520\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mabi.202400520","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Chitosan/Sodium Tripolyphosphate Microemulsion Enhanced Oral Insulin Delivery via Intestinal Lymphoid
Oral insulin delivery systems are currently being explored as the best alternative to subcutaneous injections, aiming to overcome gastrointestinal barriers and achieve efficient oral insulin delivery. This study presents a microemulsion delivery system that utilizes chitosan/sodium tripolyphosphate (CS/STPP) to enhance the stability of kernel-loaded insulin and increase bioavailability via intestinal absorption and lymphatic transport. The insulin/chitosan/sodium tripolyphosphate-microemulsion (Ins/CS/STPP-ME) is a particle size of (81.03 ± 7.19) nm and a polydispersity index (PDI) of (0.313 ± 0.013). Infrared spectroscopy confirms insulin encapsulation. Ins/CS/STPP-ME exhibits favorable stability and releasesproperties in gastrointestinal fluids, retaining a maximum of (53.076 ± 12.587)% insulin in a pepsin environment and (62.982 ± 13.105)% in a trypsin environment after 60 min. In vivo studies have demonstrated that the addition of CS/STPP to the internal phase of Ins/CS/STPP-ME results in a rapid onset of action and sustained hypoglycaemic effect in diabetic rats. Lymphatic blockade by cycloheximide verified Ins/CS/STPP-ME and its ability to cross the gut and enter the bloodstream via lymphatic transport. This work demonstrates that Ins/CS/STPP-ME can stabilize proteins in the gastrointestinal environment, facilitate lymphatic absorption, enhance bioavailability, and provide longer-lasting hypoglycemic effects, thus providing the possibility for oral biomacromolecule delivery.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.