Thomas R Barrick, Carson Ingo, Matt G Hall, Franklyn A Howe
{"title":"准扩散成像:应用于脑组织的超高 b 值和随时间变化的弥散成像。","authors":"Thomas R Barrick, Carson Ingo, Matt G Hall, Franklyn A Howe","doi":"10.1002/nbm.70011","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate that quasi-diffusion imaging (QDI) is a signal representation that extends towards the negative power law regime. We evaluate QDI for in vivo human and ex vivo fixed rat brain tissue across <math> <semantics><mrow><mi>b</mi></mrow> <annotation>$$ b $$</annotation></semantics> </math> -value ranges from 0 to 25,000 s mm<sup>-2</sup>, determine whether accurate parameter estimates can be acquired from clinically feasible scan times and investigate their diffusion time-dependence. Several mathematical properties of the QDI representation are presented. QDI describes diffusion magnetic resonance imaging (dMRI) signal attenuation by two fitting parameters within a Mittag-Leffler function (MLF). We present its asymptotic properties at low and high <math> <semantics><mrow><mi>b</mi></mrow> <annotation>$$ b $$</annotation></semantics> </math> -values and define the inflection point (IP) above which the signal tends to a negative power law. To show that QDI provides an accurate representation of dMRI signal, we apply it to two human brain datasets (Dataset 1: <math> <semantics><mrow><mn>0</mn> <mo>≤</mo> <mi>b</mi> <mo>≤</mo> <mn>15,000</mn></mrow> <annotation>$$ 0\\le b\\le \\mathrm{15,000} $$</annotation></semantics> </math> s mm<sup>-2</sup>; Dataset 2: <math> <semantics><mrow><mn>0</mn> <mo>≤</mo> <mi>b</mi> <mo>≤</mo> <mn>17,800</mn></mrow> <annotation>$$ 0\\le b\\le \\mathrm{17,800} $$</annotation></semantics> </math> s mm<sup>-2</sup>) and an ex vivo fixed rat brain (Dataset 3: <math> <semantics><mrow><mn>0</mn> <mo>≤</mo> <mi>b</mi> <mo>≤</mo> <mn>25,000</mn></mrow> <annotation>$$ 0\\le b\\le \\mathrm{25,000} $$</annotation></semantics> </math> s mm<sup>-2</sup>, diffusion times <math> <semantics><mrow><mn>17.5</mn> <mo>≤</mo> <mo>∆</mo> <mo>≤</mo> <mn>200</mn></mrow> <annotation>$$ 17.5\\le \\Delta \\le 200 $$</annotation></semantics> </math> ms). A clinically feasible 4 <math> <semantics><mrow><mi>b</mi></mrow> <annotation>$$ b $$</annotation></semantics> </math> -value subset of Dataset 1 ( <math> <semantics><mrow><mn>0</mn> <mo>≤</mo> <mi>b</mi> <mo>≤</mo> <mn>15,000</mn></mrow> <annotation>$$ 0\\le b\\le \\mathrm{15,000} $$</annotation></semantics> </math> s mm<sup>-2</sup>) is also analysed (acquisition time 6 min and 16 s). QDI showed excellent fits to observed signal attenuation, identified signal IPs and provided an apparent negative power law. Stable parameter estimates were identified upon increasing the maximum <math> <semantics><mrow><mi>b</mi></mrow> <annotation>$$ b $$</annotation></semantics> </math> -value of the fitting range to near and above signal IPs, suggesting QDI is a valid signal representation within in vivo and ex vivo brain tissue across large <math> <semantics><mrow><mi>b</mi></mrow> <annotation>$$ b $$</annotation></semantics> </math> -value ranges with multiple diffusion times. QDI parameters were accurately estimated from clinically feasible shorter data acquisition, and time-dependence was observed with parameters approaching a Gaussian tortuosity limit with increasing diffusion time. In conclusion, QDI provides a parsimonious representation of dMRI signal attenuation in brain tissue that is sensitive to tissue microstructural heterogeneity and cell membrane permeability.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 4","pages":"e70011"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868825/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quasi-Diffusion Imaging: Application to Ultra-High b-Value and Time-Dependent Diffusion Images of Brain Tissue.\",\"authors\":\"Thomas R Barrick, Carson Ingo, Matt G Hall, Franklyn A Howe\",\"doi\":\"10.1002/nbm.70011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We demonstrate that quasi-diffusion imaging (QDI) is a signal representation that extends towards the negative power law regime. We evaluate QDI for in vivo human and ex vivo fixed rat brain tissue across <math> <semantics><mrow><mi>b</mi></mrow> <annotation>$$ b $$</annotation></semantics> </math> -value ranges from 0 to 25,000 s mm<sup>-2</sup>, determine whether accurate parameter estimates can be acquired from clinically feasible scan times and investigate their diffusion time-dependence. Several mathematical properties of the QDI representation are presented. QDI describes diffusion magnetic resonance imaging (dMRI) signal attenuation by two fitting parameters within a Mittag-Leffler function (MLF). We present its asymptotic properties at low and high <math> <semantics><mrow><mi>b</mi></mrow> <annotation>$$ b $$</annotation></semantics> </math> -values and define the inflection point (IP) above which the signal tends to a negative power law. To show that QDI provides an accurate representation of dMRI signal, we apply it to two human brain datasets (Dataset 1: <math> <semantics><mrow><mn>0</mn> <mo>≤</mo> <mi>b</mi> <mo>≤</mo> <mn>15,000</mn></mrow> <annotation>$$ 0\\\\le b\\\\le \\\\mathrm{15,000} $$</annotation></semantics> </math> s mm<sup>-2</sup>; Dataset 2: <math> <semantics><mrow><mn>0</mn> <mo>≤</mo> <mi>b</mi> <mo>≤</mo> <mn>17,800</mn></mrow> <annotation>$$ 0\\\\le b\\\\le \\\\mathrm{17,800} $$</annotation></semantics> </math> s mm<sup>-2</sup>) and an ex vivo fixed rat brain (Dataset 3: <math> <semantics><mrow><mn>0</mn> <mo>≤</mo> <mi>b</mi> <mo>≤</mo> <mn>25,000</mn></mrow> <annotation>$$ 0\\\\le b\\\\le \\\\mathrm{25,000} $$</annotation></semantics> </math> s mm<sup>-2</sup>, diffusion times <math> <semantics><mrow><mn>17.5</mn> <mo>≤</mo> <mo>∆</mo> <mo>≤</mo> <mn>200</mn></mrow> <annotation>$$ 17.5\\\\le \\\\Delta \\\\le 200 $$</annotation></semantics> </math> ms). A clinically feasible 4 <math> <semantics><mrow><mi>b</mi></mrow> <annotation>$$ b $$</annotation></semantics> </math> -value subset of Dataset 1 ( <math> <semantics><mrow><mn>0</mn> <mo>≤</mo> <mi>b</mi> <mo>≤</mo> <mn>15,000</mn></mrow> <annotation>$$ 0\\\\le b\\\\le \\\\mathrm{15,000} $$</annotation></semantics> </math> s mm<sup>-2</sup>) is also analysed (acquisition time 6 min and 16 s). QDI showed excellent fits to observed signal attenuation, identified signal IPs and provided an apparent negative power law. Stable parameter estimates were identified upon increasing the maximum <math> <semantics><mrow><mi>b</mi></mrow> <annotation>$$ b $$</annotation></semantics> </math> -value of the fitting range to near and above signal IPs, suggesting QDI is a valid signal representation within in vivo and ex vivo brain tissue across large <math> <semantics><mrow><mi>b</mi></mrow> <annotation>$$ b $$</annotation></semantics> </math> -value ranges with multiple diffusion times. QDI parameters were accurately estimated from clinically feasible shorter data acquisition, and time-dependence was observed with parameters approaching a Gaussian tortuosity limit with increasing diffusion time. In conclusion, QDI provides a parsimonious representation of dMRI signal attenuation in brain tissue that is sensitive to tissue microstructural heterogeneity and cell membrane permeability.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\"38 4\",\"pages\":\"e70011\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868825/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.70011\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.70011","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了准扩散成像(QDI)是一种向负幂律区域扩展的信号表示。我们评估了人体和离体固定大鼠脑组织的QDI,其b $$ b $$值范围从0到25,000 s mm-2,确定是否可以从临床可行的扫描时间获得准确的参数估计,并研究它们的扩散时间依赖性。给出了QDI表示的几个数学性质。QDI通过Mittag-Leffler函数(MLF)内的两个拟合参数描述扩散磁共振成像(dMRI)信号衰减。我们给出了它在低和高b $$ b $$ -值处的渐近性质,并定义了信号趋于负幂律的拐点(IP)。为了证明QDI提供了dMRI信号的准确表示,我们将其应用于两个人脑数据集(Dataset 1: 0≤b≤15,000 $$ 0\le b\le \mathrm{15,000} $$ s mm-2;数据集2:0≤b≤17,800 $$ 0\le b\le \mathrm{17,800} $$ s mm-2)和离体固定大鼠脑(数据集3:0≤b≤25,000 $$ 0\le b\le \mathrm{25,000} $$ s mm-2,扩散次数17.5≤∆≤200 $$ 17.5\le \Delta \le 200 $$ ms)。还分析了数据集1临床可行的4 b $$ b $$值子集(0≤b≤15,000 $$ 0\le b\le \mathrm{15,000} $$ s mm-2)(采集时间为6 min和16 s)。QDI对观测到的信号衰减有很好的拟合,识别出了信号的ip,并提供了明显的负幂律。将拟合范围的最大值b $$ b $$ -值增加到接近和高于信号IPs时,确定了稳定的参数估计,这表明QDI是体内和离体脑组织中具有多个扩散次数的大b $$ b $$ -值范围内的有效信号表示。通过临床可行的较短的数据采集准确估计QDI参数,随着扩散时间的增加,参数接近高斯扭曲极限,具有时间依赖性。综上所述,QDI提供了脑组织dMRI信号衰减的简洁表征,对组织微结构异质性和细胞膜通透性敏感。
Quasi-Diffusion Imaging: Application to Ultra-High b-Value and Time-Dependent Diffusion Images of Brain Tissue.
We demonstrate that quasi-diffusion imaging (QDI) is a signal representation that extends towards the negative power law regime. We evaluate QDI for in vivo human and ex vivo fixed rat brain tissue across -value ranges from 0 to 25,000 s mm-2, determine whether accurate parameter estimates can be acquired from clinically feasible scan times and investigate their diffusion time-dependence. Several mathematical properties of the QDI representation are presented. QDI describes diffusion magnetic resonance imaging (dMRI) signal attenuation by two fitting parameters within a Mittag-Leffler function (MLF). We present its asymptotic properties at low and high -values and define the inflection point (IP) above which the signal tends to a negative power law. To show that QDI provides an accurate representation of dMRI signal, we apply it to two human brain datasets (Dataset 1: s mm-2; Dataset 2: s mm-2) and an ex vivo fixed rat brain (Dataset 3: s mm-2, diffusion times ms). A clinically feasible 4 -value subset of Dataset 1 ( s mm-2) is also analysed (acquisition time 6 min and 16 s). QDI showed excellent fits to observed signal attenuation, identified signal IPs and provided an apparent negative power law. Stable parameter estimates were identified upon increasing the maximum -value of the fitting range to near and above signal IPs, suggesting QDI is a valid signal representation within in vivo and ex vivo brain tissue across large -value ranges with multiple diffusion times. QDI parameters were accurately estimated from clinically feasible shorter data acquisition, and time-dependence was observed with parameters approaching a Gaussian tortuosity limit with increasing diffusion time. In conclusion, QDI provides a parsimonious representation of dMRI signal attenuation in brain tissue that is sensitive to tissue microstructural heterogeneity and cell membrane permeability.
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.