{"title":"Promotion of NLRP3 autophagosome degradation by PV-K nanodevice for protection against macrophage pyroptosis-mediated lung injury.","authors":"Yan Fan, Jian Mei, Yuehao Shen, Ying Gao, Lina Zhao, Shuqi Meng, Shuai Zhou, Yu Qian, Ying Zhang, Zhiwei Wang, Yu Song, Jianfeng Liu, Shuaijie Pei, Yan Cui, Hong Yang, Shan-Yu Fung, Keliang Xie","doi":"10.1186/s12951-025-03219-y","DOIUrl":null,"url":null,"abstract":"<p><p>Acute respiratory distress syndrome (ARDS) has emerged as a significant global health challenge, with no definitive curative treatment available. Recent evidence suggests that pyroptosis of immune cells plays a pivotal role in the pathogenesis of ARDS. Targeting and modulating immune cell pyroptosis in lung tissue may offer a promising strategy to mitigate the harmful inflammation associated with this condition. In this study, we designed and synthesized a novel class of peptide-functionalized nanoparticles, PV-K, which possess an intrinsic capacity for phagocytosis by macrophages. Concurrently, the incorporation of two FFD functional groups into a single polypeptide enhances the biological activity of PV-K. Amazingly, PV-K demonstrated potent inhibitory effects on nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3)-mediated pyroptosis in both mouse bone marrow-derived macrophages and the human THP-1 cell-derived macrophages. In both lipopolysaccharide and cecal ligation and puncture induced acute lung injury mouse models, treatment with PV-K significantly reduced disease severity by alleviating pulmonary inflammation and inhibiting macrophage pyroptosis. Transcriptomic analysis revealed that PV-K enhanced SQSM1/p62-mediated autophagy through upregulation of the NRF2 signaling pathway. Mechanistically, PV-K facilitated the interaction between SQSTM1/p62 and NLRP3, promoting the autolysosomal degradation of NLRP3. Notably, the inhibitory effect of PV-K on macrophage pyroptosis during acute lung injury was abrogated in Nrf2<sup>-/-</sup> mice. This study introduces a novel nanotherapeutic approach aiming at regulating macrophage pyroptosis by facilitating NLRP3 degradation, thereby controlling inflammation in ARDS/ALI. This strategy may complement existing clinical treatments for ARDS/ALI.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"148"},"PeriodicalIF":10.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11866711/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03219-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Promotion of NLRP3 autophagosome degradation by PV-K nanodevice for protection against macrophage pyroptosis-mediated lung injury.
Acute respiratory distress syndrome (ARDS) has emerged as a significant global health challenge, with no definitive curative treatment available. Recent evidence suggests that pyroptosis of immune cells plays a pivotal role in the pathogenesis of ARDS. Targeting and modulating immune cell pyroptosis in lung tissue may offer a promising strategy to mitigate the harmful inflammation associated with this condition. In this study, we designed and synthesized a novel class of peptide-functionalized nanoparticles, PV-K, which possess an intrinsic capacity for phagocytosis by macrophages. Concurrently, the incorporation of two FFD functional groups into a single polypeptide enhances the biological activity of PV-K. Amazingly, PV-K demonstrated potent inhibitory effects on nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3)-mediated pyroptosis in both mouse bone marrow-derived macrophages and the human THP-1 cell-derived macrophages. In both lipopolysaccharide and cecal ligation and puncture induced acute lung injury mouse models, treatment with PV-K significantly reduced disease severity by alleviating pulmonary inflammation and inhibiting macrophage pyroptosis. Transcriptomic analysis revealed that PV-K enhanced SQSM1/p62-mediated autophagy through upregulation of the NRF2 signaling pathway. Mechanistically, PV-K facilitated the interaction between SQSTM1/p62 and NLRP3, promoting the autolysosomal degradation of NLRP3. Notably, the inhibitory effect of PV-K on macrophage pyroptosis during acute lung injury was abrogated in Nrf2-/- mice. This study introduces a novel nanotherapeutic approach aiming at regulating macrophage pyroptosis by facilitating NLRP3 degradation, thereby controlling inflammation in ARDS/ALI. This strategy may complement existing clinical treatments for ARDS/ALI.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.