应变编码磁共振(SENC)在0.55T的可行性。

IF 4.2 1区 医学 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
John L Heyniger, Yingmin Liu, Nikita Nair, Preethi Chandrasekaran, Katherine Binzel, Vinay Kumar, Shyam S Bansal, Donel Tani, Farouk Osman, Vedat O Yildiz, Juliet Varghese, Yuchi Han, Orlando P Simonetti
{"title":"应变编码磁共振(SENC)在0.55T的可行性。","authors":"John L Heyniger, Yingmin Liu, Nikita Nair, Preethi Chandrasekaran, Katherine Binzel, Vinay Kumar, Shyam S Bansal, Donel Tani, Farouk Osman, Vedat O Yildiz, Juliet Varghese, Yuchi Han, Orlando P Simonetti","doi":"10.1016/j.jocmr.2025.101870","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Low-field (<1.0T) wide-bore cardiovascular magnetic resonance (CMR) has the potential to improve accessibility by reducing costs and accommodating severely obese and claustrophobic patients. However, intrinsically reduced signal-to-noise ratio (SNR) may affect techniques such as strain-encoded magnetic resonance (SENC), a method to quantify regional strain that may be more sensitive than global function measurements to detect abnormalities. We sought to characterize global and segmental strain derived from SENC on a wide-bore, low-field system in healthy human subjects and a porcine model of myocardial infarction.</p><p><strong>Study type: </strong>Original Research METHODS: A segmented k-space, spoiled gradient echo prototype SENC sequence was implemented on a 0.55T system with an 80cm bore. A dynamic phantom and sixteen healthy volunteers (mean age 31yrs, 10 female) were scanned at 0.55T and 1.5T. Ten of the subjects were scanned twice at each field strength to evaluate scan-rescan repeatability. In volunteers, t-tests were used to compare global strain results; global and segmental strain reproducibility between field strengths and scan-rescan repeatability were assessed via Bland-Altman analysis and intraclass correlation (ICC) methods. Additionally, adjunctive SENC followed by late-gadolinium enhancement (LGE) was acquired at 0.55T eight weeks post myocardial infarction (MI) in an ongoing study of a porcine model (n=6) of non-reperfused MI. Porcine left ventricular (LV) segments were categorized based on LGE and compared to resultant segmental strain via one-way ANOVA.</p><p><strong>Results: </strong>Mean phantom strain showed no significant differences between field strengths (p > 0.10). In volunteers mean LV global longitudinal (GLS) and circumferential strain (GCS) were -19.4% ±1.1 and -20.4% ±0.9 at 0.55T compared to -18.7 ±1.4% and -19.2% ±1.6 at 1.5T (p>0.10). For both 1.5T vs 0.55T reproducibility and scan-rescan repeatability, LS proved to have better agreement than CS, and mean biases were low for both global and segmental comparisons throughout. Limits of agreement were good for global strain comparisons, but were notably wider when comparing segmental values, especially circumferential strain reproducibility and 0.55T scan-rescan repeatability. ICC analysis of pooled LV segmental strain showed good LS agreement between and within field strengths (0.78-0.89), but was fair for CS between 1.5T vs 0.55T (0.60) and CS 0.55T repeatability (0.64). In the pigs, LGE demonstrated an expected territory of infarction; segmental LS in LGE+ vs remote segments was -10.8% ±4.0 vs -16.8% ±5.1; p<0.001. Segmental CS in LGE+ vs remote segments was -11.9% ±2.7 vs -14.6% ±2.7; p=0.0011.</p><p><strong>Conclusions: </strong>Our results support the feasibility of SENC at 0.55T, with accurate phantom measurements, good agreement of global values in human volunteers, and correlates of functional impairment with known MI territory. Reproducibility between field strengths showed minimal systemic bias but at times substantial limits of agreement. Repeatability of global and segmental longitudinal strain at 0.55T was similar to established 1.5T performance, although circumferential strain was notably poorer. LV circumferential strain may lack sufficient reliability in its current implementation for use at 0.55T.</p>","PeriodicalId":15221,"journal":{"name":"Journal of Cardiovascular Magnetic Resonance","volume":" ","pages":"101870"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Strain Encoded Magnetic Resonance (SENC) at 0.55T.\",\"authors\":\"John L Heyniger, Yingmin Liu, Nikita Nair, Preethi Chandrasekaran, Katherine Binzel, Vinay Kumar, Shyam S Bansal, Donel Tani, Farouk Osman, Vedat O Yildiz, Juliet Varghese, Yuchi Han, Orlando P Simonetti\",\"doi\":\"10.1016/j.jocmr.2025.101870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Low-field (<1.0T) wide-bore cardiovascular magnetic resonance (CMR) has the potential to improve accessibility by reducing costs and accommodating severely obese and claustrophobic patients. However, intrinsically reduced signal-to-noise ratio (SNR) may affect techniques such as strain-encoded magnetic resonance (SENC), a method to quantify regional strain that may be more sensitive than global function measurements to detect abnormalities. We sought to characterize global and segmental strain derived from SENC on a wide-bore, low-field system in healthy human subjects and a porcine model of myocardial infarction.</p><p><strong>Study type: </strong>Original Research METHODS: A segmented k-space, spoiled gradient echo prototype SENC sequence was implemented on a 0.55T system with an 80cm bore. A dynamic phantom and sixteen healthy volunteers (mean age 31yrs, 10 female) were scanned at 0.55T and 1.5T. Ten of the subjects were scanned twice at each field strength to evaluate scan-rescan repeatability. In volunteers, t-tests were used to compare global strain results; global and segmental strain reproducibility between field strengths and scan-rescan repeatability were assessed via Bland-Altman analysis and intraclass correlation (ICC) methods. Additionally, adjunctive SENC followed by late-gadolinium enhancement (LGE) was acquired at 0.55T eight weeks post myocardial infarction (MI) in an ongoing study of a porcine model (n=6) of non-reperfused MI. Porcine left ventricular (LV) segments were categorized based on LGE and compared to resultant segmental strain via one-way ANOVA.</p><p><strong>Results: </strong>Mean phantom strain showed no significant differences between field strengths (p > 0.10). In volunteers mean LV global longitudinal (GLS) and circumferential strain (GCS) were -19.4% ±1.1 and -20.4% ±0.9 at 0.55T compared to -18.7 ±1.4% and -19.2% ±1.6 at 1.5T (p>0.10). For both 1.5T vs 0.55T reproducibility and scan-rescan repeatability, LS proved to have better agreement than CS, and mean biases were low for both global and segmental comparisons throughout. Limits of agreement were good for global strain comparisons, but were notably wider when comparing segmental values, especially circumferential strain reproducibility and 0.55T scan-rescan repeatability. ICC analysis of pooled LV segmental strain showed good LS agreement between and within field strengths (0.78-0.89), but was fair for CS between 1.5T vs 0.55T (0.60) and CS 0.55T repeatability (0.64). In the pigs, LGE demonstrated an expected territory of infarction; segmental LS in LGE+ vs remote segments was -10.8% ±4.0 vs -16.8% ±5.1; p<0.001. Segmental CS in LGE+ vs remote segments was -11.9% ±2.7 vs -14.6% ±2.7; p=0.0011.</p><p><strong>Conclusions: </strong>Our results support the feasibility of SENC at 0.55T, with accurate phantom measurements, good agreement of global values in human volunteers, and correlates of functional impairment with known MI territory. Reproducibility between field strengths showed minimal systemic bias but at times substantial limits of agreement. Repeatability of global and segmental longitudinal strain at 0.55T was similar to established 1.5T performance, although circumferential strain was notably poorer. LV circumferential strain may lack sufficient reliability in its current implementation for use at 0.55T.</p>\",\"PeriodicalId\":15221,\"journal\":{\"name\":\"Journal of Cardiovascular Magnetic Resonance\",\"volume\":\" \",\"pages\":\"101870\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cardiovascular Magnetic Resonance\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jocmr.2025.101870\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Magnetic Resonance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jocmr.2025.101870","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景:低场(研究类型:原创)研究方法:在0.55T、孔径为80cm的系统上实现分段的k空间破坏梯度回声原型SENC序列。动态幻影和16名健康志愿者(平均年龄31岁,10名女性)分别在0.55T和1.5T下进行扫描。10名受试者在每种场强下被扫描两次,以评估扫描-扫描的重复性。在志愿者中,t检验用于比较全局应变结果;通过Bland-Altman分析和类内相关(ICC)方法评估场强和扫描-扫描重复性之间的全局和分段应变重复性。此外,在一项正在进行的猪非再灌注心肌梗死(MI)模型(n=6)中,在心肌梗死(MI)后8周0.55T时获得了辅助SENC,随后是晚期钆增强(LGE)。根据LGE对猪左心室(LV)节段进行分类,并通过单因素方差分析(单因素方差分析)与由此产生的节段应变进行比较。结果:不同场强间平均幻肢应变无显著差异(p < 0.05)。在志愿者中,平均左室整体纵向(GLS)和周向应变(GCS)在0.55T时为-19.4%±1.1和-20.4%±0.9,而在1.5T时为-18.7±1.4%和-19.2%±1.6 (p>0.10)。对于1.5T vs 0.55T的再现性和扫描扫描的可重复性,LS证明比CS具有更好的一致性,并且在全局和局部比较中平均偏差都很低。对于全局应变比较,一致性的极限是很好的,但当比较分段值时,特别是周向应变可重复性和0.55T扫描扫描可重复性时,一致性明显更宽。混合LV片段应变的ICC分析显示,在场强之间和场强内部LS一致性良好(0.78-0.89),但在1.5T vs 0.55T之间的CS(0.60)和CS 0.55T的重复性(0.64)是公平的。在猪中,LGE显示出预期的梗死区域;LGE+段LS为-10.8%±4.0 vs -16.8%±5.1;结论:我们的研究结果支持0.55T SENC的可行性,具有准确的幻影测量,人类志愿者的全局值很好地一致,并且功能损伤与已知的心肌梗死区域相关。场强之间的可重复性显示出最小的系统偏差,但有时一致性有很大的限制。在0.55T时,整体和分段纵向应变的重复性与1.5T时相似,但周向应变明显较差。低压周向应变在0.55T下使用时,目前的实现可能缺乏足够的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feasibility of Strain Encoded Magnetic Resonance (SENC) at 0.55T.

Background: Low-field (<1.0T) wide-bore cardiovascular magnetic resonance (CMR) has the potential to improve accessibility by reducing costs and accommodating severely obese and claustrophobic patients. However, intrinsically reduced signal-to-noise ratio (SNR) may affect techniques such as strain-encoded magnetic resonance (SENC), a method to quantify regional strain that may be more sensitive than global function measurements to detect abnormalities. We sought to characterize global and segmental strain derived from SENC on a wide-bore, low-field system in healthy human subjects and a porcine model of myocardial infarction.

Study type: Original Research METHODS: A segmented k-space, spoiled gradient echo prototype SENC sequence was implemented on a 0.55T system with an 80cm bore. A dynamic phantom and sixteen healthy volunteers (mean age 31yrs, 10 female) were scanned at 0.55T and 1.5T. Ten of the subjects were scanned twice at each field strength to evaluate scan-rescan repeatability. In volunteers, t-tests were used to compare global strain results; global and segmental strain reproducibility between field strengths and scan-rescan repeatability were assessed via Bland-Altman analysis and intraclass correlation (ICC) methods. Additionally, adjunctive SENC followed by late-gadolinium enhancement (LGE) was acquired at 0.55T eight weeks post myocardial infarction (MI) in an ongoing study of a porcine model (n=6) of non-reperfused MI. Porcine left ventricular (LV) segments were categorized based on LGE and compared to resultant segmental strain via one-way ANOVA.

Results: Mean phantom strain showed no significant differences between field strengths (p > 0.10). In volunteers mean LV global longitudinal (GLS) and circumferential strain (GCS) were -19.4% ±1.1 and -20.4% ±0.9 at 0.55T compared to -18.7 ±1.4% and -19.2% ±1.6 at 1.5T (p>0.10). For both 1.5T vs 0.55T reproducibility and scan-rescan repeatability, LS proved to have better agreement than CS, and mean biases were low for both global and segmental comparisons throughout. Limits of agreement were good for global strain comparisons, but were notably wider when comparing segmental values, especially circumferential strain reproducibility and 0.55T scan-rescan repeatability. ICC analysis of pooled LV segmental strain showed good LS agreement between and within field strengths (0.78-0.89), but was fair for CS between 1.5T vs 0.55T (0.60) and CS 0.55T repeatability (0.64). In the pigs, LGE demonstrated an expected territory of infarction; segmental LS in LGE+ vs remote segments was -10.8% ±4.0 vs -16.8% ±5.1; p<0.001. Segmental CS in LGE+ vs remote segments was -11.9% ±2.7 vs -14.6% ±2.7; p=0.0011.

Conclusions: Our results support the feasibility of SENC at 0.55T, with accurate phantom measurements, good agreement of global values in human volunteers, and correlates of functional impairment with known MI territory. Reproducibility between field strengths showed minimal systemic bias but at times substantial limits of agreement. Repeatability of global and segmental longitudinal strain at 0.55T was similar to established 1.5T performance, although circumferential strain was notably poorer. LV circumferential strain may lack sufficient reliability in its current implementation for use at 0.55T.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
12.50%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Journal of Cardiovascular Magnetic Resonance (JCMR) publishes high-quality articles on all aspects of basic, translational and clinical research on the design, development, manufacture, and evaluation of cardiovascular magnetic resonance (CMR) methods applied to the cardiovascular system. Topical areas include, but are not limited to: New applications of magnetic resonance to improve the diagnostic strategies, risk stratification, characterization and management of diseases affecting the cardiovascular system. New methods to enhance or accelerate image acquisition and data analysis. Results of multicenter, or larger single-center studies that provide insight into the utility of CMR. Basic biological perceptions derived by CMR methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信