{"title":"JAK2V617F金纳米颗粒抑制IRF7和TLR9的激活。","authors":"Berkay Tokcan, Esra Nur Demirtaş, Selçuk Sözer","doi":"10.1007/s00251-025-01374-y","DOIUrl":null,"url":null,"abstract":"<p><p>Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-MPNs) are characterized by the overproduction of myeloid cells and a lack of response to cytokine signaling, along with genomic instability and the accumulation of nucleic acids in the cytoplasm. In this study, we investigated the effects of oligonucleotide-gold nanoparticle conjugates (ON-GNPs) targeting JAK2 or JAK2V617F mRNAs on nucleic acid-sensing pathways in HEL, SET2, and K562 cell lines. We evaluated changes in gene expression related to TLR9 and cGAS/STING pathways, RAGE/TLR9 receptor dynamics, and inflammatory cytokine release over short-term (0.5-2 h) and long-term (24-72 h) exposures. Our results demonstrated that ON-GNPs transiently suppressed TLR9, IRF7, and NFKB1 expression during the short term, followed by significant upregulation after 24 h, persisting up to 72 h. Notably, JAK2V617F-targeting ON-GNPs induced heightened IRF7 activation in HEL and SET2 cells after 24 h without affecting TLR9/RAGE expression. Additionally, IL-8 secretion increased in HEL and SET2 culture media after 72 h, correlating with interferon pathway activation. This study reveals that complementary ON-GNPs can modulate nucleic acid-sensing pathways, suppressing IL-8 and inflammatory signaling in the short term while inducing delayed activation of TLR9 and IRF7 in the presence of JAK2V617F. These findings provide a promising foundation for developing ON-GNP-based therapeutic strategies to manage inflammation and disease progression in Ph-MPNs.</p>","PeriodicalId":13446,"journal":{"name":"Immunogenetics","volume":"77 1","pages":"16"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868351/pdf/","citationCount":"0","resultStr":"{\"title\":\"Suppressed activation of the IRF7 and TLR9 by JAK2V617F gold nanoparticles.\",\"authors\":\"Berkay Tokcan, Esra Nur Demirtaş, Selçuk Sözer\",\"doi\":\"10.1007/s00251-025-01374-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-MPNs) are characterized by the overproduction of myeloid cells and a lack of response to cytokine signaling, along with genomic instability and the accumulation of nucleic acids in the cytoplasm. In this study, we investigated the effects of oligonucleotide-gold nanoparticle conjugates (ON-GNPs) targeting JAK2 or JAK2V617F mRNAs on nucleic acid-sensing pathways in HEL, SET2, and K562 cell lines. We evaluated changes in gene expression related to TLR9 and cGAS/STING pathways, RAGE/TLR9 receptor dynamics, and inflammatory cytokine release over short-term (0.5-2 h) and long-term (24-72 h) exposures. Our results demonstrated that ON-GNPs transiently suppressed TLR9, IRF7, and NFKB1 expression during the short term, followed by significant upregulation after 24 h, persisting up to 72 h. Notably, JAK2V617F-targeting ON-GNPs induced heightened IRF7 activation in HEL and SET2 cells after 24 h without affecting TLR9/RAGE expression. Additionally, IL-8 secretion increased in HEL and SET2 culture media after 72 h, correlating with interferon pathway activation. This study reveals that complementary ON-GNPs can modulate nucleic acid-sensing pathways, suppressing IL-8 and inflammatory signaling in the short term while inducing delayed activation of TLR9 and IRF7 in the presence of JAK2V617F. These findings provide a promising foundation for developing ON-GNP-based therapeutic strategies to manage inflammation and disease progression in Ph-MPNs.</p>\",\"PeriodicalId\":13446,\"journal\":{\"name\":\"Immunogenetics\",\"volume\":\"77 1\",\"pages\":\"16\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11868351/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Immunogenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00251-025-01374-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00251-025-01374-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Suppressed activation of the IRF7 and TLR9 by JAK2V617F gold nanoparticles.
Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-MPNs) are characterized by the overproduction of myeloid cells and a lack of response to cytokine signaling, along with genomic instability and the accumulation of nucleic acids in the cytoplasm. In this study, we investigated the effects of oligonucleotide-gold nanoparticle conjugates (ON-GNPs) targeting JAK2 or JAK2V617F mRNAs on nucleic acid-sensing pathways in HEL, SET2, and K562 cell lines. We evaluated changes in gene expression related to TLR9 and cGAS/STING pathways, RAGE/TLR9 receptor dynamics, and inflammatory cytokine release over short-term (0.5-2 h) and long-term (24-72 h) exposures. Our results demonstrated that ON-GNPs transiently suppressed TLR9, IRF7, and NFKB1 expression during the short term, followed by significant upregulation after 24 h, persisting up to 72 h. Notably, JAK2V617F-targeting ON-GNPs induced heightened IRF7 activation in HEL and SET2 cells after 24 h without affecting TLR9/RAGE expression. Additionally, IL-8 secretion increased in HEL and SET2 culture media after 72 h, correlating with interferon pathway activation. This study reveals that complementary ON-GNPs can modulate nucleic acid-sensing pathways, suppressing IL-8 and inflammatory signaling in the short term while inducing delayed activation of TLR9 and IRF7 in the presence of JAK2V617F. These findings provide a promising foundation for developing ON-GNP-based therapeutic strategies to manage inflammation and disease progression in Ph-MPNs.
期刊介绍:
Immunogenetics publishes original papers, brief communications, and reviews on research in the following areas: genetics and evolution of the immune system; genetic control of immune response and disease susceptibility; bioinformatics of the immune system; structure of immunologically important molecules; and immunogenetics of reproductive biology, tissue differentiation, and development.