对可诱导的弗里德里希共济失调小鼠进行的稳健行为评估显示,NRF2诱导并未改善小鼠的行为。

IF 4 3区 医学 Q2 CELL BIOLOGY
Disease Models & Mechanisms Pub Date : 2025-03-01 Epub Date: 2025-04-02 DOI:10.1242/dmm.052128
Claire B Montgomery, Lili Salinas, Garrett P Cox, Lauren E Adcock, Tiffany Chang, Francisco Figueroa, Gino Cortopassi, Elena N Dedkova
{"title":"对可诱导的弗里德里希共济失调小鼠进行的稳健行为评估显示,NRF2诱导并未改善小鼠的行为。","authors":"Claire B Montgomery, Lili Salinas, Garrett P Cox, Lauren E Adcock, Tiffany Chang, Francisco Figueroa, Gino Cortopassi, Elena N Dedkova","doi":"10.1242/dmm.052128","DOIUrl":null,"url":null,"abstract":"<p><p>Friedreich's ataxia, a recessive disorder caused by a mutation in the frataxin (FXN) gene, has few mouse models that demonstrate a progressive behavioral decline paralleling that of patients. A mouse model of systemic frataxin deficiency, the FXNKD, was recently developed using a doxycycline-inducible method; it is thought to mimic the patient phenotype seen when frataxin levels are decreased, but it has not been determined whether it is reliable for assessment of therapeutics. FXNKD mice underwent testing for 12 weeks alongside littermates, undergoing tests of motor function, gait and sensation. Additionally, a subset underwent treatment with omaveloxolone or dimethyl fumarate, both NRF2 inducers. We identified multiple techniques that sensitively detect decline in the mice, including open field, gait analysis and Von Frey tests. Furthermore, we developed a novel Salinas-Montgomery ataxia scale, which allows for more comprehensive assessment than a four-part cerebellar ataxia scale. Despite validating multiple sensitive techniques, we did not see any benefits of NRF2-inducing therapies in any tests. This was exacerbated by the discovery of a sexual dimorphism in FXNKD mice, in which males show more significant decline and better responsiveness to NRF2-inducing therapeutics.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992351/pdf/","citationCount":"0","resultStr":"{\"title\":\"Robust behavioral assessment of the inducible Friedreich's ataxia mouse does not show improvement with NRF2 induction.\",\"authors\":\"Claire B Montgomery, Lili Salinas, Garrett P Cox, Lauren E Adcock, Tiffany Chang, Francisco Figueroa, Gino Cortopassi, Elena N Dedkova\",\"doi\":\"10.1242/dmm.052128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Friedreich's ataxia, a recessive disorder caused by a mutation in the frataxin (FXN) gene, has few mouse models that demonstrate a progressive behavioral decline paralleling that of patients. A mouse model of systemic frataxin deficiency, the FXNKD, was recently developed using a doxycycline-inducible method; it is thought to mimic the patient phenotype seen when frataxin levels are decreased, but it has not been determined whether it is reliable for assessment of therapeutics. FXNKD mice underwent testing for 12 weeks alongside littermates, undergoing tests of motor function, gait and sensation. Additionally, a subset underwent treatment with omaveloxolone or dimethyl fumarate, both NRF2 inducers. We identified multiple techniques that sensitively detect decline in the mice, including open field, gait analysis and Von Frey tests. Furthermore, we developed a novel Salinas-Montgomery ataxia scale, which allows for more comprehensive assessment than a four-part cerebellar ataxia scale. Despite validating multiple sensitive techniques, we did not see any benefits of NRF2-inducing therapies in any tests. This was exacerbated by the discovery of a sexual dimorphism in FXNKD mice, in which males show more significant decline and better responsiveness to NRF2-inducing therapeutics.</p>\",\"PeriodicalId\":11144,\"journal\":{\"name\":\"Disease Models & Mechanisms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11992351/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Disease Models & Mechanisms\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1242/dmm.052128\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.052128","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

弗里德赖希共济失调是一种由卵黄蛋白(Fxn)基因突变引起的隐性疾病,很少有小鼠模型显示出与患者平行的进行性行为下降。最近用强力霉素诱导的方法建立了全身性纤维蛋白缺乏症(FXNKD)小鼠模型;它被认为是模仿病人的表型,在那里看到的fraataxin水平降低,但它不确定是否可靠的治疗评估。FXNKD小鼠与窝友一起进行了12周的测试,进行了运动功能、步态和感觉的测试。此外,一部分患者接受nrf2诱导剂奥马洛酮或富马酸二甲酯治疗。我们确定了多种技术,可以灵敏地检测它们的衰退,包括开阔场地,步态分析和冯弗雷。此外,我们开发了一种新的Salinas-Montgomery共济失调量表(SMAS),与四部分小脑共济失调量表相比,它允许更全面的评估。尽管验证了多种敏感技术,但我们没有在任何测试中看到nrf2诱导疗法的任何益处。在FXNKD小鼠中发现的性别二态性加剧了这种情况,雄性小鼠表现出更显著的下降,对nrf2诱导治疗的反应更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust behavioral assessment of the inducible Friedreich's ataxia mouse does not show improvement with NRF2 induction.

Friedreich's ataxia, a recessive disorder caused by a mutation in the frataxin (FXN) gene, has few mouse models that demonstrate a progressive behavioral decline paralleling that of patients. A mouse model of systemic frataxin deficiency, the FXNKD, was recently developed using a doxycycline-inducible method; it is thought to mimic the patient phenotype seen when frataxin levels are decreased, but it has not been determined whether it is reliable for assessment of therapeutics. FXNKD mice underwent testing for 12 weeks alongside littermates, undergoing tests of motor function, gait and sensation. Additionally, a subset underwent treatment with omaveloxolone or dimethyl fumarate, both NRF2 inducers. We identified multiple techniques that sensitively detect decline in the mice, including open field, gait analysis and Von Frey tests. Furthermore, we developed a novel Salinas-Montgomery ataxia scale, which allows for more comprehensive assessment than a four-part cerebellar ataxia scale. Despite validating multiple sensitive techniques, we did not see any benefits of NRF2-inducing therapies in any tests. This was exacerbated by the discovery of a sexual dimorphism in FXNKD mice, in which males show more significant decline and better responsiveness to NRF2-inducing therapeutics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Disease Models & Mechanisms
Disease Models & Mechanisms 医学-病理学
CiteScore
6.60
自引率
7.00%
发文量
203
审稿时长
6-12 weeks
期刊介绍: Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信