核背侧的光遗传学操作揭示了转录的时间要求和后果。

IF 3.7 2区 生物学 Q1 DEVELOPMENTAL BIOLOGY
Development Pub Date : 2025-03-15 Epub Date: 2025-03-31 DOI:10.1242/dev.204706
Virginia L Pimmett, James McGehee, Antonio Trullo, Maria Douaihy, Ovidiu Radulescu, Angelike Stathopoulos, Mounia Lagha
{"title":"核背侧的光遗传学操作揭示了转录的时间要求和后果。","authors":"Virginia L Pimmett, James McGehee, Antonio Trullo, Maria Douaihy, Ovidiu Radulescu, Angelike Stathopoulos, Mounia Lagha","doi":"10.1242/dev.204706","DOIUrl":null,"url":null,"abstract":"<p><p>Morphogen gradients convey essential spatial information during tissue patterning. Although the concentration and timing of morphogen exposure are both crucial, how cells interpret these graded inputs remains challenging to address. We employed an optogenetic system to acutely and reversibly modulate the nuclear concentration of the morphogen Dorsal (DL), homolog of NF-κB, which orchestrates dorsoventral patterning in the Drosophila embryo. By controlling DL nuclear concentration while simultaneously recording target gene outputs in real time, we identified a critical window for DL action that is required to instruct patterning and characterized the resulting effect on spatiotemporal transcription of target genes in terms of timing, coordination and bursting. We found that a transient decrease in nuclear DL levels at nuclear cycle 13 leads to reduced expression of the mesoderm-associated gene snail (sna) and partial derepression of the neurogenic ectoderm-associated target short gastrulation (sog) in ventral regions. Surprisingly, the mispatterning elicited by this transient change in DL was detectable at the level of single-cell transcriptional bursting kinetics, specifically affecting long inter-burst durations. Our approach of using temporally resolved and reversible modulation of a morphogen in vivo, combined with mathematical modeling, establishes a framework for understanding the stimulus-response relationships that govern embryonic patterning.</p>","PeriodicalId":11375,"journal":{"name":"Development","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optogenetic manipulation of nuclear Dorsal reveals temporal requirements and consequences for transcription.\",\"authors\":\"Virginia L Pimmett, James McGehee, Antonio Trullo, Maria Douaihy, Ovidiu Radulescu, Angelike Stathopoulos, Mounia Lagha\",\"doi\":\"10.1242/dev.204706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Morphogen gradients convey essential spatial information during tissue patterning. Although the concentration and timing of morphogen exposure are both crucial, how cells interpret these graded inputs remains challenging to address. We employed an optogenetic system to acutely and reversibly modulate the nuclear concentration of the morphogen Dorsal (DL), homolog of NF-κB, which orchestrates dorsoventral patterning in the Drosophila embryo. By controlling DL nuclear concentration while simultaneously recording target gene outputs in real time, we identified a critical window for DL action that is required to instruct patterning and characterized the resulting effect on spatiotemporal transcription of target genes in terms of timing, coordination and bursting. We found that a transient decrease in nuclear DL levels at nuclear cycle 13 leads to reduced expression of the mesoderm-associated gene snail (sna) and partial derepression of the neurogenic ectoderm-associated target short gastrulation (sog) in ventral regions. Surprisingly, the mispatterning elicited by this transient change in DL was detectable at the level of single-cell transcriptional bursting kinetics, specifically affecting long inter-burst durations. Our approach of using temporally resolved and reversible modulation of a morphogen in vivo, combined with mathematical modeling, establishes a framework for understanding the stimulus-response relationships that govern embryonic patterning.</p>\",\"PeriodicalId\":11375,\"journal\":{\"name\":\"Development\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1242/dev.204706\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/dev.204706","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

形态发生梯度在组织模式形成过程中传递重要的空间信息。虽然形态素暴露的浓度和时间都是至关重要的,但细胞如何解释这些分级输入仍然具有挑战性。我们采用光遗传系统来急性和可逆地调节形态原Dorsal (DL)的核浓度,这是NF-κB的同源物,在果蝇胚胎中协调背-腹模式。通过在实时记录靶基因输出的同时控制DL核浓度,我们确定了指导模式所需的DL作用的关键窗口,并从时间、协调和爆发方面表征了由此产生的对靶基因时空转录的影响。我们发现,在核周期13时,核DL水平的短暂下降导致中胚层相关基因蜗牛(sna)的表达减少,以及腹侧区域神经源性外胚层相关靶细胞短原肠胚(sog)的部分抑制。令人惊讶的是,在单细胞转录爆发动力学水平上,可以检测到由DL的短暂变化引起的错误模式,特别是影响长时间的爆发间持续时间。我们的方法是利用体内形态发生的临时解决和可逆的调制,结合数学建模,建立一个框架来理解控制胚胎模式的刺激-反应关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optogenetic manipulation of nuclear Dorsal reveals temporal requirements and consequences for transcription.

Morphogen gradients convey essential spatial information during tissue patterning. Although the concentration and timing of morphogen exposure are both crucial, how cells interpret these graded inputs remains challenging to address. We employed an optogenetic system to acutely and reversibly modulate the nuclear concentration of the morphogen Dorsal (DL), homolog of NF-κB, which orchestrates dorsoventral patterning in the Drosophila embryo. By controlling DL nuclear concentration while simultaneously recording target gene outputs in real time, we identified a critical window for DL action that is required to instruct patterning and characterized the resulting effect on spatiotemporal transcription of target genes in terms of timing, coordination and bursting. We found that a transient decrease in nuclear DL levels at nuclear cycle 13 leads to reduced expression of the mesoderm-associated gene snail (sna) and partial derepression of the neurogenic ectoderm-associated target short gastrulation (sog) in ventral regions. Surprisingly, the mispatterning elicited by this transient change in DL was detectable at the level of single-cell transcriptional bursting kinetics, specifically affecting long inter-burst durations. Our approach of using temporally resolved and reversible modulation of a morphogen in vivo, combined with mathematical modeling, establishes a framework for understanding the stimulus-response relationships that govern embryonic patterning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Development
Development 生物-发育生物学
CiteScore
6.70
自引率
4.30%
发文量
433
审稿时长
3 months
期刊介绍: Development’s scope covers all aspects of plant and animal development, including stem cell biology and regeneration. The single most important criterion for acceptance in Development is scientific excellence. Research papers (articles and reports) should therefore pose and test a significant hypothesis or address a significant question, and should provide novel perspectives that advance our understanding of development. We also encourage submission of papers that use computational methods or mathematical models to obtain significant new insights into developmental biology topics. Manuscripts that are descriptive in nature will be considered only when they lay important groundwork for a field and/or provide novel resources for understanding developmental processes of broad interest to the community. Development includes a Techniques and Resources section for the publication of new methods, datasets, and other types of resources. Papers describing new techniques should include a proof-of-principle demonstration that the technique is valuable to the developmental biology community; they need not include in-depth follow-up analysis. The technique must be described in sufficient detail to be easily replicated by other investigators. Development will also consider protocol-type papers of exceptional interest to the community. We welcome submission of Resource papers, for example those reporting new databases, systems-level datasets, or genetic resources of major value to the developmental biology community. For all papers, the data or resource described must be made available to the community with minimal restrictions upon publication. To aid navigability, Development has dedicated sections of the journal to stem cells & regeneration and to human development. The criteria for acceptance into these sections is identical to those outlined above. Authors and editors are encouraged to nominate appropriate manuscripts for inclusion in one of these sections.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信