Zainab Harissa, Yuseon Kim, Amanda R Dicks, Nancy Steward, Farshid Guilak
{"title":"导致骨骼发育不良的 TRPV4 基因突变会改变软骨细胞对机械负荷的转录组反应。","authors":"Zainab Harissa, Yuseon Kim, Amanda R Dicks, Nancy Steward, Farshid Guilak","doi":"10.1152/ajpcell.01066.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Transient receptor potential vanilloid 4 (TRPV4) is a mechanosensitive ion channel highly expressed in chondrocytes that supports cartilage development and homeostasis. Mutations in the channel can cause skeletal dysplasias, including the gain-of-function mutations V620I and T89I, which lead to brachyolmia and metatropic dysplasia, respectively. These mutations suppress hypertrophic differentiation, but the mechanisms by which they alter chondrocyte response to mechanical load remain to be elucidated. To determine the effect of these mutations on chondrocyte mechanotransduction, tissue-engineered cartilage was derived from differentiated clustered regularly interspaced short palindromic repeats (CRISPR)-edited human-induced pluripotent stem cells (hiPSCs) harboring the moderate V620I or severe T89I TRPV4 mutations. Wild-type and mutant tissue-engineered hiPSC-derived cartilage contructs were subjected to compressive mechanical loading at physiological levels, and transcriptomic signatures were assessed by RNA-sequencing. Our results demonstrate that the V620I and T89I mutations diminish the mechanoresponsiveness of chondrocytes, as evidenced by reduced gene expression downstream of TRPV4 activation, including those involved in endochondral ossification. Changes in the expression of genes involved in extracellular matrix production and organization were found to contribute toward the phenotype in V620I mutant chondrocytes, whereas dysregulated retinoic acid signaling was linked to T89I, and disrupted proliferation was common to both. Our findings suggest that dysfunctional mechanotransduction due to V620I and T89I mutations in TRPV4 contribute to the developmental phenotypes, supporting TRPV4 modulation as a potential pharmacologic target.<b>NEW & NOTEWORTHY</b> Gain-of-function mutations in TRPV4, a mechano- and osmosensitive ion channel, are linked to skeletal dysplasias, but their effects on chondrocyte mechanotransduction remain unknown. Using human iPSCs harboring skeletal dysplasia-causing mutations, we developed and mechanically loaded tissue-engineered cartilage. Our findings show that V620I and T89I mutations reduce chondrocyte mechanoresponsiveness, evidenced by decreased gene expression downstream of TRPV4 activation, providing insight into TRPV4-related skeletal disorders and potential pharmacological targets.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1135-C1149"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skeletal dysplasia-causing mutations in TRPV4 alter the chondrocyte transcriptomic response to mechanical loading.\",\"authors\":\"Zainab Harissa, Yuseon Kim, Amanda R Dicks, Nancy Steward, Farshid Guilak\",\"doi\":\"10.1152/ajpcell.01066.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transient receptor potential vanilloid 4 (TRPV4) is a mechanosensitive ion channel highly expressed in chondrocytes that supports cartilage development and homeostasis. Mutations in the channel can cause skeletal dysplasias, including the gain-of-function mutations V620I and T89I, which lead to brachyolmia and metatropic dysplasia, respectively. These mutations suppress hypertrophic differentiation, but the mechanisms by which they alter chondrocyte response to mechanical load remain to be elucidated. To determine the effect of these mutations on chondrocyte mechanotransduction, tissue-engineered cartilage was derived from differentiated clustered regularly interspaced short palindromic repeats (CRISPR)-edited human-induced pluripotent stem cells (hiPSCs) harboring the moderate V620I or severe T89I TRPV4 mutations. Wild-type and mutant tissue-engineered hiPSC-derived cartilage contructs were subjected to compressive mechanical loading at physiological levels, and transcriptomic signatures were assessed by RNA-sequencing. Our results demonstrate that the V620I and T89I mutations diminish the mechanoresponsiveness of chondrocytes, as evidenced by reduced gene expression downstream of TRPV4 activation, including those involved in endochondral ossification. Changes in the expression of genes involved in extracellular matrix production and organization were found to contribute toward the phenotype in V620I mutant chondrocytes, whereas dysregulated retinoic acid signaling was linked to T89I, and disrupted proliferation was common to both. Our findings suggest that dysfunctional mechanotransduction due to V620I and T89I mutations in TRPV4 contribute to the developmental phenotypes, supporting TRPV4 modulation as a potential pharmacologic target.<b>NEW & NOTEWORTHY</b> Gain-of-function mutations in TRPV4, a mechano- and osmosensitive ion channel, are linked to skeletal dysplasias, but their effects on chondrocyte mechanotransduction remain unknown. Using human iPSCs harboring skeletal dysplasia-causing mutations, we developed and mechanically loaded tissue-engineered cartilage. Our findings show that V620I and T89I mutations reduce chondrocyte mechanoresponsiveness, evidenced by decreased gene expression downstream of TRPV4 activation, providing insight into TRPV4-related skeletal disorders and potential pharmacological targets.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"C1135-C1149\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.01066.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.01066.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Skeletal dysplasia-causing mutations in TRPV4 alter the chondrocyte transcriptomic response to mechanical loading.
Transient receptor potential vanilloid 4 (TRPV4) is a mechanosensitive ion channel highly expressed in chondrocytes that supports cartilage development and homeostasis. Mutations in the channel can cause skeletal dysplasias, including the gain-of-function mutations V620I and T89I, which lead to brachyolmia and metatropic dysplasia, respectively. These mutations suppress hypertrophic differentiation, but the mechanisms by which they alter chondrocyte response to mechanical load remain to be elucidated. To determine the effect of these mutations on chondrocyte mechanotransduction, tissue-engineered cartilage was derived from differentiated clustered regularly interspaced short palindromic repeats (CRISPR)-edited human-induced pluripotent stem cells (hiPSCs) harboring the moderate V620I or severe T89I TRPV4 mutations. Wild-type and mutant tissue-engineered hiPSC-derived cartilage contructs were subjected to compressive mechanical loading at physiological levels, and transcriptomic signatures were assessed by RNA-sequencing. Our results demonstrate that the V620I and T89I mutations diminish the mechanoresponsiveness of chondrocytes, as evidenced by reduced gene expression downstream of TRPV4 activation, including those involved in endochondral ossification. Changes in the expression of genes involved in extracellular matrix production and organization were found to contribute toward the phenotype in V620I mutant chondrocytes, whereas dysregulated retinoic acid signaling was linked to T89I, and disrupted proliferation was common to both. Our findings suggest that dysfunctional mechanotransduction due to V620I and T89I mutations in TRPV4 contribute to the developmental phenotypes, supporting TRPV4 modulation as a potential pharmacologic target.NEW & NOTEWORTHY Gain-of-function mutations in TRPV4, a mechano- and osmosensitive ion channel, are linked to skeletal dysplasias, but their effects on chondrocyte mechanotransduction remain unknown. Using human iPSCs harboring skeletal dysplasia-causing mutations, we developed and mechanically loaded tissue-engineered cartilage. Our findings show that V620I and T89I mutations reduce chondrocyte mechanoresponsiveness, evidenced by decreased gene expression downstream of TRPV4 activation, providing insight into TRPV4-related skeletal disorders and potential pharmacological targets.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.