Yekaterina Tiper, Zhuoye Xie, Arne Hofemeier, Heta Lad, Mattias Luber, Roman Krawetz, Timo Betz, Wolfram-Hubertus Zimmermann, Aaron B Morton, Steven S Segal, Penney M Gilbert
{"title":"优化电场刺激参数揭示人体骨骼肌微组织的最大收缩功能。","authors":"Yekaterina Tiper, Zhuoye Xie, Arne Hofemeier, Heta Lad, Mattias Luber, Roman Krawetz, Timo Betz, Wolfram-Hubertus Zimmermann, Aaron B Morton, Steven S Segal, Penney M Gilbert","doi":"10.1152/ajpcell.00308.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscle microtissues are engineered to develop therapies for restoring muscle function in patients. However, optimal electrical field stimulation (EFS) parameters to evaluate the function of muscle microtissues remain unestablished. This study reports a protocol to optimize EFS parameters for eliciting contractile force of muscle microtissues cultured in micropost platforms. Muscle microtissues were produced across an opposing pair of microposts in polydimethylsiloxane and polymethyl methacrylate culture platforms using primary, immortalized, and induced pluripotent stem cell-derived myoblasts. In response to EFS between needle electrodes, contraction deflects microposts proportional to developed force. At 5 V, pulse durations used for native muscle (0.1-1 ms) failed to elicit contraction of microtissues; durations reported for engineered muscle (5-10 ms) failed to elicit peak force. Instead, pulse durations of 20-80 ms were required to elicit peak twitch force across microtissues derived from five myoblast lines. Similarly, although peak tetanic force occurs at 20-50 Hz for native human muscles, it varied across microtissues depending on the cell line type, ranging from 7 to 60 Hz. A new parameter, the dynamic oscillation of force, captured trends during rhythmic contractions, whereas quantifying the duration-at-peak force provides an extended kinetics parameter. Our findings indicate that muscle microtissues have cell line type-specific contractile properties, yet all contract and relax more slowly than native muscle, implicating underdeveloped excitation-contraction coupling. Failure to optimize EFS parameters can mask the functional potential of muscle microtissues by underestimating force production. Optimizing and reporting EFS parameters and metrics is necessary to leverage muscle microtissues for advancing skeletal muscle therapies.<b>NEW & NOTEWORTHY</b> Electrical field stimulation (EFS) parameters remain to be standardized for engineered skeletal muscle. Herein, we report a protocol for defining EFS parameters that elicit the maximal contractile force of muscle microtissues cultivated in micropost devices and highlight the value of developing appropriate metrics. The dynamic oscillation of force and duration-at-peak force are introduced as novel metrics of contraction kinetics.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1160-C1176"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing electrical field stimulation parameters reveals the maximum contractile function of human skeletal muscle microtissues.\",\"authors\":\"Yekaterina Tiper, Zhuoye Xie, Arne Hofemeier, Heta Lad, Mattias Luber, Roman Krawetz, Timo Betz, Wolfram-Hubertus Zimmermann, Aaron B Morton, Steven S Segal, Penney M Gilbert\",\"doi\":\"10.1152/ajpcell.00308.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Skeletal muscle microtissues are engineered to develop therapies for restoring muscle function in patients. However, optimal electrical field stimulation (EFS) parameters to evaluate the function of muscle microtissues remain unestablished. This study reports a protocol to optimize EFS parameters for eliciting contractile force of muscle microtissues cultured in micropost platforms. Muscle microtissues were produced across an opposing pair of microposts in polydimethylsiloxane and polymethyl methacrylate culture platforms using primary, immortalized, and induced pluripotent stem cell-derived myoblasts. In response to EFS between needle electrodes, contraction deflects microposts proportional to developed force. At 5 V, pulse durations used for native muscle (0.1-1 ms) failed to elicit contraction of microtissues; durations reported for engineered muscle (5-10 ms) failed to elicit peak force. Instead, pulse durations of 20-80 ms were required to elicit peak twitch force across microtissues derived from five myoblast lines. Similarly, although peak tetanic force occurs at 20-50 Hz for native human muscles, it varied across microtissues depending on the cell line type, ranging from 7 to 60 Hz. A new parameter, the dynamic oscillation of force, captured trends during rhythmic contractions, whereas quantifying the duration-at-peak force provides an extended kinetics parameter. Our findings indicate that muscle microtissues have cell line type-specific contractile properties, yet all contract and relax more slowly than native muscle, implicating underdeveloped excitation-contraction coupling. Failure to optimize EFS parameters can mask the functional potential of muscle microtissues by underestimating force production. Optimizing and reporting EFS parameters and metrics is necessary to leverage muscle microtissues for advancing skeletal muscle therapies.<b>NEW & NOTEWORTHY</b> Electrical field stimulation (EFS) parameters remain to be standardized for engineered skeletal muscle. Herein, we report a protocol for defining EFS parameters that elicit the maximal contractile force of muscle microtissues cultivated in micropost devices and highlight the value of developing appropriate metrics. The dynamic oscillation of force and duration-at-peak force are introduced as novel metrics of contraction kinetics.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"C1160-C1176\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00308.2024\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00308.2024","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Optimizing electrical field stimulation parameters reveals the maximum contractile function of human skeletal muscle microtissues.
Skeletal muscle microtissues are engineered to develop therapies for restoring muscle function in patients. However, optimal electrical field stimulation (EFS) parameters to evaluate the function of muscle microtissues remain unestablished. This study reports a protocol to optimize EFS parameters for eliciting contractile force of muscle microtissues cultured in micropost platforms. Muscle microtissues were produced across an opposing pair of microposts in polydimethylsiloxane and polymethyl methacrylate culture platforms using primary, immortalized, and induced pluripotent stem cell-derived myoblasts. In response to EFS between needle electrodes, contraction deflects microposts proportional to developed force. At 5 V, pulse durations used for native muscle (0.1-1 ms) failed to elicit contraction of microtissues; durations reported for engineered muscle (5-10 ms) failed to elicit peak force. Instead, pulse durations of 20-80 ms were required to elicit peak twitch force across microtissues derived from five myoblast lines. Similarly, although peak tetanic force occurs at 20-50 Hz for native human muscles, it varied across microtissues depending on the cell line type, ranging from 7 to 60 Hz. A new parameter, the dynamic oscillation of force, captured trends during rhythmic contractions, whereas quantifying the duration-at-peak force provides an extended kinetics parameter. Our findings indicate that muscle microtissues have cell line type-specific contractile properties, yet all contract and relax more slowly than native muscle, implicating underdeveloped excitation-contraction coupling. Failure to optimize EFS parameters can mask the functional potential of muscle microtissues by underestimating force production. Optimizing and reporting EFS parameters and metrics is necessary to leverage muscle microtissues for advancing skeletal muscle therapies.NEW & NOTEWORTHY Electrical field stimulation (EFS) parameters remain to be standardized for engineered skeletal muscle. Herein, we report a protocol for defining EFS parameters that elicit the maximal contractile force of muscle microtissues cultivated in micropost devices and highlight the value of developing appropriate metrics. The dynamic oscillation of force and duration-at-peak force are introduced as novel metrics of contraction kinetics.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.