掺杂石墨烯/In2Se3 双原子催化剂中的铁电转换实现了可调 N2 固定。

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2025-03-12 Epub Date: 2025-02-27 DOI:10.1021/acsami.4c21092
Mohammad Amin Akhound, Maryam Soleimani, Mahdi Pourfath
{"title":"掺杂石墨烯/In2Se3 双原子催化剂中的铁电转换实现了可调 N2 固定。","authors":"Mohammad Amin Akhound, Maryam Soleimani, Mahdi Pourfath","doi":"10.1021/acsami.4c21092","DOIUrl":null,"url":null,"abstract":"<p><p>The electrochemical nitrogen reduction reaction (NRR) provides a sustainable alternative to ammonia synthesis. However, the development of catalysts with high activity and selectivity under ambient conditions remains a significant challenge. In this work, we propose a class of dual-atom catalysts (DACs), consisting of two metal atoms embedded in nitrogen-doped porous graphene (M<sub>2</sub>NPG) supported on a ferroelectric α-In<sub>2</sub>Se<sub>3</sub> monolayer. Using density functional theory (DFT) calculations, we explore the effect of ferroelectric polarization switching on the structural stability, catalytic performance, and reaction mechanisms of these DACs. By computationally screening 27 metal atoms as active sites, we identify four promising candidates (V, Co, Ru, and Ta) with V<sub>2</sub>NPG@In<sub>2</sub>Se<sub>3</sub> standing out due to its exceptional properties. The precise control of NRR pathways, along with tunable limiting potentials and selective product formation, can be achieved through the polarization switching of the α-In<sub>2</sub>Se<sub>3</sub> monolayer. The combination of low limiting potential, abundant active sites, tunable catalytic behavior, and high selectivity against the hydrogen evolution reaction (HER) highlights the potential of V<sub>2</sub>NPG@In<sub>2</sub>Se<sub>3</sub> as a promising alternative to traditional single-atom catalysts. This work demonstrates a versatile strategy for integrating DACs with ferroelectric materials, offering valuable insights into designing next-generation catalysts for NRR and beyond.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"15385-15397"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912189/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tunable N<sub>2</sub> Fixation Enabled by Ferroelectric Switching in Doped Graphene/In<sub>2</sub>Se<sub>3</sub> Dual-Atom Catalysts.\",\"authors\":\"Mohammad Amin Akhound, Maryam Soleimani, Mahdi Pourfath\",\"doi\":\"10.1021/acsami.4c21092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electrochemical nitrogen reduction reaction (NRR) provides a sustainable alternative to ammonia synthesis. However, the development of catalysts with high activity and selectivity under ambient conditions remains a significant challenge. In this work, we propose a class of dual-atom catalysts (DACs), consisting of two metal atoms embedded in nitrogen-doped porous graphene (M<sub>2</sub>NPG) supported on a ferroelectric α-In<sub>2</sub>Se<sub>3</sub> monolayer. Using density functional theory (DFT) calculations, we explore the effect of ferroelectric polarization switching on the structural stability, catalytic performance, and reaction mechanisms of these DACs. By computationally screening 27 metal atoms as active sites, we identify four promising candidates (V, Co, Ru, and Ta) with V<sub>2</sub>NPG@In<sub>2</sub>Se<sub>3</sub> standing out due to its exceptional properties. The precise control of NRR pathways, along with tunable limiting potentials and selective product formation, can be achieved through the polarization switching of the α-In<sub>2</sub>Se<sub>3</sub> monolayer. The combination of low limiting potential, abundant active sites, tunable catalytic behavior, and high selectivity against the hydrogen evolution reaction (HER) highlights the potential of V<sub>2</sub>NPG@In<sub>2</sub>Se<sub>3</sub> as a promising alternative to traditional single-atom catalysts. This work demonstrates a versatile strategy for integrating DACs with ferroelectric materials, offering valuable insights into designing next-generation catalysts for NRR and beyond.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"15385-15397\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912189/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c21092\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c21092","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电化学氮还原反应(NRR)为氨合成提供了一种可持续的替代方法。然而,开发在环境条件下具有高活性和高选择性的催化剂仍然是一项重大挑战。在这项工作中,我们提出了一类双原子催化剂(DAC),它由嵌入氮掺杂多孔石墨烯(M2NPG)的两个金属原子组成,支撑在铁电体 α-In2Se3 单层上。利用密度泛函理论(DFT)计算,我们探索了铁电极化转换对这些 DAC 的结构稳定性、催化性能和反应机制的影响。通过计算筛选出 27 个金属原子作为活性位点,我们确定了四个有前景的候选位点(V、Co、Ru 和 Ta),其中 V2NPG@In2Se3 因其卓越的性能而脱颖而出。通过对 α-In2Se3 单层进行极化转换,可以精确控制 NRR 途径、可调极限电位和选择性产物形成。V2NPG@In2Se3 结合了低极限电位、丰富的活性位点、可调的催化行为以及对氢进化反应(HER)的高选择性,凸显了 V2NPG@In2Se3 作为传统单原子催化剂替代品的潜力。这项工作展示了一种将 DAC 与铁电材料相结合的多功能策略,为设计用于 NRR 及其他领域的下一代催化剂提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tunable N2 Fixation Enabled by Ferroelectric Switching in Doped Graphene/In2Se3 Dual-Atom Catalysts.

The electrochemical nitrogen reduction reaction (NRR) provides a sustainable alternative to ammonia synthesis. However, the development of catalysts with high activity and selectivity under ambient conditions remains a significant challenge. In this work, we propose a class of dual-atom catalysts (DACs), consisting of two metal atoms embedded in nitrogen-doped porous graphene (M2NPG) supported on a ferroelectric α-In2Se3 monolayer. Using density functional theory (DFT) calculations, we explore the effect of ferroelectric polarization switching on the structural stability, catalytic performance, and reaction mechanisms of these DACs. By computationally screening 27 metal atoms as active sites, we identify four promising candidates (V, Co, Ru, and Ta) with V2NPG@In2Se3 standing out due to its exceptional properties. The precise control of NRR pathways, along with tunable limiting potentials and selective product formation, can be achieved through the polarization switching of the α-In2Se3 monolayer. The combination of low limiting potential, abundant active sites, tunable catalytic behavior, and high selectivity against the hydrogen evolution reaction (HER) highlights the potential of V2NPG@In2Se3 as a promising alternative to traditional single-atom catalysts. This work demonstrates a versatile strategy for integrating DACs with ferroelectric materials, offering valuable insights into designing next-generation catalysts for NRR and beyond.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信