Manja Annette Behrens, Alexandra Franzén, Sara Carlert, Urban Skantze, Lennart Lindfors and Ulf Olsson
{"title":"晶体和无定形纳米粒子的奥斯特瓦尔德熟化。","authors":"Manja Annette Behrens, Alexandra Franzén, Sara Carlert, Urban Skantze, Lennart Lindfors and Ulf Olsson","doi":"10.1039/D4SM01544D","DOIUrl":null,"url":null,"abstract":"<p >Ostwald ripening of crystalline and amorphous nanoparticle dispersions of a model organic compound are compared. While amorphous nanoparticles show a rapid ripening on the timescale of minutes, the crystalline nanoparticles do not ripen within the timescale of weeks. A metastable zone for crystal growth, presumably involving a free energy barrier, is identified, and we propose that this explains the absence of Ostwald ripening in the nanocrystal dispersion. As Ostwald ripening is a process typically occurring near equilibrium, even a small barrier may prevent ripening.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 12","pages":" 2349-2354"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sm/d4sm01544d?page=search","citationCount":"0","resultStr":"{\"title\":\"On the Ostwald ripening of crystalline and amorphous nanoparticles\",\"authors\":\"Manja Annette Behrens, Alexandra Franzén, Sara Carlert, Urban Skantze, Lennart Lindfors and Ulf Olsson\",\"doi\":\"10.1039/D4SM01544D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ostwald ripening of crystalline and amorphous nanoparticle dispersions of a model organic compound are compared. While amorphous nanoparticles show a rapid ripening on the timescale of minutes, the crystalline nanoparticles do not ripen within the timescale of weeks. A metastable zone for crystal growth, presumably involving a free energy barrier, is identified, and we propose that this explains the absence of Ostwald ripening in the nanocrystal dispersion. As Ostwald ripening is a process typically occurring near equilibrium, even a small barrier may prevent ripening.</p>\",\"PeriodicalId\":103,\"journal\":{\"name\":\"Soft Matter\",\"volume\":\" 12\",\"pages\":\" 2349-2354\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/sm/d4sm01544d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft Matter\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d4sm01544d\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d4sm01544d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
On the Ostwald ripening of crystalline and amorphous nanoparticles
Ostwald ripening of crystalline and amorphous nanoparticle dispersions of a model organic compound are compared. While amorphous nanoparticles show a rapid ripening on the timescale of minutes, the crystalline nanoparticles do not ripen within the timescale of weeks. A metastable zone for crystal growth, presumably involving a free energy barrier, is identified, and we propose that this explains the absence of Ostwald ripening in the nanocrystal dispersion. As Ostwald ripening is a process typically occurring near equilibrium, even a small barrier may prevent ripening.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.