Kieran D. Richards, Ella Comish and Rachel C Evans
{"title":"Computer vision for high-throughput analysis of pickering emulsions†","authors":"Kieran D. Richards, Ella Comish and Rachel C Evans","doi":"10.1039/D4SM01252F","DOIUrl":null,"url":null,"abstract":"<p >The quanitative analysis of solid-particle stabilized emulsions, known as Pickering emulsions, is crucial for their application in food, cosmetics, and pharmaceuticals. However, size analysis of these emulsion droplets, with diameters ranging from 5 to 500 μm, is challenging due to their non-uniform spatial and polydisperse size-distribution. Here, we investigate the application of the circle-Hough transform (CHT), a well-established computer-vision technique characterised by its ability to detect circular features in noisy images, for the seldom explored quantitative assessment of droplet size from optical microscopy images. This is particularly relevant to images where emulsions are captured in a single 2D focal plane. To implement the CHT with optical images, we have developed an open-source software application (“Hough-Scan”), which incorporates a user-friendly graphical interface for ease of use, and a tiling algorithm allowing localised regions of circles to be processed in parallel and improving computational efficiency. Using Hough-Scan, we demonstrate that the CHT has superior precision, recall and accuracy for the identification of Pickering emulsion droplets and determination of their size, compared to both manual identification and established computer vision methods. Our study demonstrates that CHT implementation using Hough-Scan can significantly increase the ease of image analysis for a diverse range of Pickering emulsion systems of varying spatial and size distribution, as well as visual artefacts common to example microscopy images.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 12","pages":" 2339-2348"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/sm/d4sm01252f?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d4sm01252f","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Computer vision for high-throughput analysis of pickering emulsions†
The quanitative analysis of solid-particle stabilized emulsions, known as Pickering emulsions, is crucial for their application in food, cosmetics, and pharmaceuticals. However, size analysis of these emulsion droplets, with diameters ranging from 5 to 500 μm, is challenging due to their non-uniform spatial and polydisperse size-distribution. Here, we investigate the application of the circle-Hough transform (CHT), a well-established computer-vision technique characterised by its ability to detect circular features in noisy images, for the seldom explored quantitative assessment of droplet size from optical microscopy images. This is particularly relevant to images where emulsions are captured in a single 2D focal plane. To implement the CHT with optical images, we have developed an open-source software application (“Hough-Scan”), which incorporates a user-friendly graphical interface for ease of use, and a tiling algorithm allowing localised regions of circles to be processed in parallel and improving computational efficiency. Using Hough-Scan, we demonstrate that the CHT has superior precision, recall and accuracy for the identification of Pickering emulsion droplets and determination of their size, compared to both manual identification and established computer vision methods. Our study demonstrates that CHT implementation using Hough-Scan can significantly increase the ease of image analysis for a diverse range of Pickering emulsion systems of varying spatial and size distribution, as well as visual artefacts common to example microscopy images.
期刊介绍:
Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.