Cu、Ag和Au元素掺杂对β-Ga2O3电子和光学性质的第一性原理计算

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2025-03-12 Epub Date: 2025-02-27 DOI:10.1021/acsami.5c00938
Jie Wang, Xin Guo, Aida Bao, Yongqiang Ma, Yayou Wang, Xinhao Xu, Yurou Li, Dongyu Yang, Yongpeng Zhao, Zeng Liu, Yajun You, Xingcheng Han
{"title":"Cu、Ag和Au元素掺杂对β-Ga2O3电子和光学性质的第一性原理计算","authors":"Jie Wang, Xin Guo, Aida Bao, Yongqiang Ma, Yayou Wang, Xinhao Xu, Yurou Li, Dongyu Yang, Yongpeng Zhao, Zeng Liu, Yajun You, Xingcheng Han","doi":"10.1021/acsami.5c00938","DOIUrl":null,"url":null,"abstract":"<p><p>β-Ga<sub>2</sub>O<sub>3</sub>, as a semiconductor material with an ultrawide band gap (<i>E</i><sub>g</sub> > 4.8 eV), emerges as a promising candidate for ultraviolet (UV)-transparent semiconductors. Its distinctive property of high transparency from visible light to the ultraviolet region gives it broad application prospects in the fields of deep UV light-emitting diodes (LEDs), UV lasers, and electronic devices. This study employed first-principles calculations utilizing the generalized gradient approximation+ <i>U</i> (GGA+<i>U</i>) method to investigate the impact of doping β-Ga<sub>2</sub>O<sub>3</sub> with transition metals including copper (Cu), silver (Ag), and gold (Au) on its electronic structure and optical properties. The findings reveal that under oxygen (O)-rich conditions, the formation energy of the doped system is lower compared to gallium (Ga)-rich conditions. And the Cu-doped β-Ga<sub>2</sub>O<sub>3</sub> is demonstrated to possess the lowest formation energy, indicating an enhanced stability of the β-Ga<sub>2</sub>O<sub>3</sub>. Additionally, the intrinsic band gap of β-Ga<sub>2</sub>O<sub>3</sub> is calculated to be 4.853 eV, whereas the band gaps of transition metal (TM)-doped β-Ga<sub>2</sub>O<sub>3</sub> are significantly reduced. Specifically, the band gaps of Cu-doped, Ag-doped, and Au-doped β-Ga<sub>2</sub>O<sub>3</sub> are 1.228, 0.982, and 1.648 eV, respectively. This reduction can be attributed to the introduction of impurity levels by the transition metals, which modify the electron distribution of gallium and oxygen atoms in the vicinity of the Fermi level. Remarkably, β-Ga<sub>2</sub>O<sub>3</sub> exhibits superior ultraviolet light absorption performance, and the incorporation of transition metals such as Cu, Ag, and Au facilitates the expansion of the absorption region from the ultraviolet to the visible light range. This transformation not only enhances the material's light-harvesting capability but also improves the electron transition capability of the intrinsic β-Ga<sub>2</sub>O<sub>3</sub>, providing a crucial theoretical foundation for the development of novel β-Ga<sub>2</sub>O<sub>3</sub>-based optoelectronic devices.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"15675-15687"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Cu, Ag, and Au Elements Doping on the Electronic and Optical Properties of β-Ga<sub>2</sub>O<sub>3</sub> via First-Principles Calculations.\",\"authors\":\"Jie Wang, Xin Guo, Aida Bao, Yongqiang Ma, Yayou Wang, Xinhao Xu, Yurou Li, Dongyu Yang, Yongpeng Zhao, Zeng Liu, Yajun You, Xingcheng Han\",\"doi\":\"10.1021/acsami.5c00938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>β-Ga<sub>2</sub>O<sub>3</sub>, as a semiconductor material with an ultrawide band gap (<i>E</i><sub>g</sub> > 4.8 eV), emerges as a promising candidate for ultraviolet (UV)-transparent semiconductors. Its distinctive property of high transparency from visible light to the ultraviolet region gives it broad application prospects in the fields of deep UV light-emitting diodes (LEDs), UV lasers, and electronic devices. This study employed first-principles calculations utilizing the generalized gradient approximation+ <i>U</i> (GGA+<i>U</i>) method to investigate the impact of doping β-Ga<sub>2</sub>O<sub>3</sub> with transition metals including copper (Cu), silver (Ag), and gold (Au) on its electronic structure and optical properties. The findings reveal that under oxygen (O)-rich conditions, the formation energy of the doped system is lower compared to gallium (Ga)-rich conditions. And the Cu-doped β-Ga<sub>2</sub>O<sub>3</sub> is demonstrated to possess the lowest formation energy, indicating an enhanced stability of the β-Ga<sub>2</sub>O<sub>3</sub>. Additionally, the intrinsic band gap of β-Ga<sub>2</sub>O<sub>3</sub> is calculated to be 4.853 eV, whereas the band gaps of transition metal (TM)-doped β-Ga<sub>2</sub>O<sub>3</sub> are significantly reduced. Specifically, the band gaps of Cu-doped, Ag-doped, and Au-doped β-Ga<sub>2</sub>O<sub>3</sub> are 1.228, 0.982, and 1.648 eV, respectively. This reduction can be attributed to the introduction of impurity levels by the transition metals, which modify the electron distribution of gallium and oxygen atoms in the vicinity of the Fermi level. Remarkably, β-Ga<sub>2</sub>O<sub>3</sub> exhibits superior ultraviolet light absorption performance, and the incorporation of transition metals such as Cu, Ag, and Au facilitates the expansion of the absorption region from the ultraviolet to the visible light range. This transformation not only enhances the material's light-harvesting capability but also improves the electron transition capability of the intrinsic β-Ga<sub>2</sub>O<sub>3</sub>, providing a crucial theoretical foundation for the development of novel β-Ga<sub>2</sub>O<sub>3</sub>-based optoelectronic devices.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\" \",\"pages\":\"15675-15687\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c00938\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c00938","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

作为一种具有超宽带隙(Eg > 4.8 eV)的半导体材料,β-Ga2O3 成为紫外线(UV)透明半导体的理想候选材料。它具有从可见光到紫外区的高透明度这一独特性质,因此在深紫外发光二极管(LED)、紫外激光器和电子器件领域具有广阔的应用前景。本研究采用广义梯度近似+ U(GGA+U)方法进行第一性原理计算,研究了β-Ga2O3掺杂铜(Cu)、银(Ag)和金(Au)等过渡金属对其电子结构和光学性质的影响。研究结果表明,在富氧(O)条件下,掺杂体系的形成能低于富镓(Ga)条件。而掺铜的β-Ga2O3具有最低的形成能,表明β-Ga2O3的稳定性增强。此外,经计算,β-Ga2O3 的本征带隙为 4.853 eV,而掺杂过渡金属 (TM) 的 β-Ga2O3 的带隙则显著减小。具体来说,掺铜、掺银和掺金的β-Ga2O3 的带隙分别为 1.228、0.982 和 1.648 eV。这种降低可归因于过渡金属引入了杂质水平,从而改变了费米水平附近镓和氧原子的电子分布。值得注意的是,β-Ga2O3 具有优异的紫外光吸收性能,而加入 Cu、Ag 和 Au 等过渡金属则有助于将吸收区域从紫外光扩展到可见光范围。这种转变不仅增强了材料的光收集能力,还提高了本征β-Ga2O3的电子转变能力,为开发基于β-Ga2O3的新型光电器件提供了重要的理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Cu, Ag, and Au Elements Doping on the Electronic and Optical Properties of β-Ga2O3 via First-Principles Calculations.

β-Ga2O3, as a semiconductor material with an ultrawide band gap (Eg > 4.8 eV), emerges as a promising candidate for ultraviolet (UV)-transparent semiconductors. Its distinctive property of high transparency from visible light to the ultraviolet region gives it broad application prospects in the fields of deep UV light-emitting diodes (LEDs), UV lasers, and electronic devices. This study employed first-principles calculations utilizing the generalized gradient approximation+ U (GGA+U) method to investigate the impact of doping β-Ga2O3 with transition metals including copper (Cu), silver (Ag), and gold (Au) on its electronic structure and optical properties. The findings reveal that under oxygen (O)-rich conditions, the formation energy of the doped system is lower compared to gallium (Ga)-rich conditions. And the Cu-doped β-Ga2O3 is demonstrated to possess the lowest formation energy, indicating an enhanced stability of the β-Ga2O3. Additionally, the intrinsic band gap of β-Ga2O3 is calculated to be 4.853 eV, whereas the band gaps of transition metal (TM)-doped β-Ga2O3 are significantly reduced. Specifically, the band gaps of Cu-doped, Ag-doped, and Au-doped β-Ga2O3 are 1.228, 0.982, and 1.648 eV, respectively. This reduction can be attributed to the introduction of impurity levels by the transition metals, which modify the electron distribution of gallium and oxygen atoms in the vicinity of the Fermi level. Remarkably, β-Ga2O3 exhibits superior ultraviolet light absorption performance, and the incorporation of transition metals such as Cu, Ag, and Au facilitates the expansion of the absorption region from the ultraviolet to the visible light range. This transformation not only enhances the material's light-harvesting capability but also improves the electron transition capability of the intrinsic β-Ga2O3, providing a crucial theoretical foundation for the development of novel β-Ga2O3-based optoelectronic devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信