{"title":"木聚糖乙酰化模式对与纤维素相互作用的影响。","authors":"Tripti Kundu, Jeremy C Smith, Madhulika Gupta","doi":"10.1021/acs.biomac.4c01469","DOIUrl":null,"url":null,"abstract":"<p><p>The present study demonstrates that the change in the degree of xylan acetylation significantly alters the 2-fold screw population that effectively interacts with the (100) hydrophobic cellulose, while such effects are less prominent for the (110) hydrophilic surface. All of the acetylated xylans reveal an ≈10-40% higher 2-fold population on the hydrophobic cellulose due to higher xylan-cellulose contacts. Deviations from periodic acetylation result in much lower 2-fold conformations, despite a comparable number of xylan-cellulose hydrogen bonds and contacts. Thus, it can be hypothesized that a specific and unique set of xylan: cellulose interactions mediate the formation of 2-fold xylan to interact with cellulose, which is also a 2-fold screw. Highly acetylated xylans desorb from cellulose, while low acetylated xylans show dependence on the topology of the cellulose surface. These findings provide additional insights into plant cell wall microstructure dynamics and inform future strategies for efficient biomass deconstruction in biofuel production.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"1659-1671"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Acetylation Patterns of Xylan on Interactions with Cellulose.\",\"authors\":\"Tripti Kundu, Jeremy C Smith, Madhulika Gupta\",\"doi\":\"10.1021/acs.biomac.4c01469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The present study demonstrates that the change in the degree of xylan acetylation significantly alters the 2-fold screw population that effectively interacts with the (100) hydrophobic cellulose, while such effects are less prominent for the (110) hydrophilic surface. All of the acetylated xylans reveal an ≈10-40% higher 2-fold population on the hydrophobic cellulose due to higher xylan-cellulose contacts. Deviations from periodic acetylation result in much lower 2-fold conformations, despite a comparable number of xylan-cellulose hydrogen bonds and contacts. Thus, it can be hypothesized that a specific and unique set of xylan: cellulose interactions mediate the formation of 2-fold xylan to interact with cellulose, which is also a 2-fold screw. Highly acetylated xylans desorb from cellulose, while low acetylated xylans show dependence on the topology of the cellulose surface. These findings provide additional insights into plant cell wall microstructure dynamics and inform future strategies for efficient biomass deconstruction in biofuel production.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"1659-1671\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c01469\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01469","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of Acetylation Patterns of Xylan on Interactions with Cellulose.
The present study demonstrates that the change in the degree of xylan acetylation significantly alters the 2-fold screw population that effectively interacts with the (100) hydrophobic cellulose, while such effects are less prominent for the (110) hydrophilic surface. All of the acetylated xylans reveal an ≈10-40% higher 2-fold population on the hydrophobic cellulose due to higher xylan-cellulose contacts. Deviations from periodic acetylation result in much lower 2-fold conformations, despite a comparable number of xylan-cellulose hydrogen bonds and contacts. Thus, it can be hypothesized that a specific and unique set of xylan: cellulose interactions mediate the formation of 2-fold xylan to interact with cellulose, which is also a 2-fold screw. Highly acetylated xylans desorb from cellulose, while low acetylated xylans show dependence on the topology of the cellulose surface. These findings provide additional insights into plant cell wall microstructure dynamics and inform future strategies for efficient biomass deconstruction in biofuel production.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.