微生物自愈水泥的裂缝修复及抗水渗透性能

IF 3.9 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Luo Liu, Youxi Li, Jianrong Song, Junlai Zhou, Weijian Yi, Yangyang Ge, Kewei Gao
{"title":"微生物自愈水泥的裂缝修复及抗水渗透性能","authors":"Luo Liu,&nbsp;Youxi Li,&nbsp;Jianrong Song,&nbsp;Junlai Zhou,&nbsp;Weijian Yi,&nbsp;Yangyang Ge,&nbsp;Kewei Gao","doi":"10.1002/elsc.70010","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on applying microbial self-healing cement in repairing cracks in cement-based materials and enhancing its resistance to water penetration performance. Traditional cement is susceptible to environmental influences, leading to the formation of microcracks and a reduction in durability. This research used <i>Bacillus pseudofirmus</i> to prepare microcapsules through sodium alginate gelation technology. We mixed microcapsules into the cement. The results indicate that the microbial self-healing cement, with a 1% self-healing agent added, increased its resistance to water penetration ability by 29.2% after 28 days. This improvement rose to 39.3% after 84 days. Additionally, we used the embedded needle method to make mortar blocks through microcracks, mimicking the cracks found in real cement. The self-healing effect of the microcapsules was especially noticeable for cracks under 0.3 mm in diameter, compared to the commonly used commercial crystallization penetration technology. This is attributed to the crystalline bodies formed by the self-healing agent in the microcapsules blocking the cracks and preventing water penetration. This study provides an environmentally friendly solution for the repair of cracks in cement-based materials using microbial self-healing technology and lays the foundation for improving the repair efficiency and durability and exploring stability and reliability in the future.</p><p><i>Practical Application:</i> This study investigated the application of microbial self-healing cement in repairing cracks in cement-based materials and enhancing its resistance to water penetration properties. Cement, a material widely used in infrastructure, has low tensile strength and often forms microcracks. These microcracks reducing the durability of cement and posing risks to the economy and safety. Adding 1% self-healing agent to microbial self-healing cement significantly increases the resistance to water penetration pressure of the mortar blocks. Compared to the standard specimens, the resistance to water penetration ability increased by 29.2% at 28 days and further increased to 39.3% at 84 days. Microbial self-healing cement could effectively restore the resistance to water penetration performance of the mortar blocks after repairing cracks. The repairing results are significantly better than the methods of mixing or applying cement crystalline materials.</p>","PeriodicalId":11678,"journal":{"name":"Engineering in Life Sciences","volume":"25 3","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.70010","citationCount":"0","resultStr":"{\"title\":\"Cracks Repairing and Resistance to Water Penetration Properties of Microbial Self-Healing Cement\",\"authors\":\"Luo Liu,&nbsp;Youxi Li,&nbsp;Jianrong Song,&nbsp;Junlai Zhou,&nbsp;Weijian Yi,&nbsp;Yangyang Ge,&nbsp;Kewei Gao\",\"doi\":\"10.1002/elsc.70010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study focuses on applying microbial self-healing cement in repairing cracks in cement-based materials and enhancing its resistance to water penetration performance. Traditional cement is susceptible to environmental influences, leading to the formation of microcracks and a reduction in durability. This research used <i>Bacillus pseudofirmus</i> to prepare microcapsules through sodium alginate gelation technology. We mixed microcapsules into the cement. The results indicate that the microbial self-healing cement, with a 1% self-healing agent added, increased its resistance to water penetration ability by 29.2% after 28 days. This improvement rose to 39.3% after 84 days. Additionally, we used the embedded needle method to make mortar blocks through microcracks, mimicking the cracks found in real cement. The self-healing effect of the microcapsules was especially noticeable for cracks under 0.3 mm in diameter, compared to the commonly used commercial crystallization penetration technology. This is attributed to the crystalline bodies formed by the self-healing agent in the microcapsules blocking the cracks and preventing water penetration. This study provides an environmentally friendly solution for the repair of cracks in cement-based materials using microbial self-healing technology and lays the foundation for improving the repair efficiency and durability and exploring stability and reliability in the future.</p><p><i>Practical Application:</i> This study investigated the application of microbial self-healing cement in repairing cracks in cement-based materials and enhancing its resistance to water penetration properties. Cement, a material widely used in infrastructure, has low tensile strength and often forms microcracks. These microcracks reducing the durability of cement and posing risks to the economy and safety. Adding 1% self-healing agent to microbial self-healing cement significantly increases the resistance to water penetration pressure of the mortar blocks. Compared to the standard specimens, the resistance to water penetration ability increased by 29.2% at 28 days and further increased to 39.3% at 84 days. Microbial self-healing cement could effectively restore the resistance to water penetration performance of the mortar blocks after repairing cracks. The repairing results are significantly better than the methods of mixing or applying cement crystalline materials.</p>\",\"PeriodicalId\":11678,\"journal\":{\"name\":\"Engineering in Life Sciences\",\"volume\":\"25 3\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/elsc.70010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering in Life Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/elsc.70010\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering in Life Sciences","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/elsc.70010","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是应用微生物自愈水泥修复水泥基材料的裂缝,提高其抗水渗透性能。传统水泥易受环境影响,导致微裂缝的形成和耐久性的降低。本研究利用海藻酸钠凝胶技术制备假僵硬芽孢杆菌微胶囊。我们将微胶囊混合到水泥中。结果表明,添加1%自愈剂的微生物自愈水泥,28 d后抗水渗透能力提高29.2%。84天后,这一比例上升至39.3%。此外,我们使用嵌入针法通过微裂缝制作砂浆块,模拟真实水泥中的裂缝。与常用的商业结晶渗透技术相比,微胶囊的自愈效果在直径小于0.3 mm的裂纹中尤为明显。这是由于微胶囊中自愈剂形成的晶体堵塞了裂缝,阻止了水的渗透。本研究为利用微生物自愈技术修复水泥基材料裂缝提供了一种环保的解决方案,为今后提高修复效率和耐久性、探索稳定性和可靠性奠定了基础。实际应用:研究了微生物自愈水泥在水泥基材料裂缝修复和抗水渗透性能提高中的应用。水泥是一种广泛应用于基础设施的材料,其抗拉强度低,易形成微裂缝。这些微裂缝降低了水泥的耐久性,给经济和安全带来了风险。在微生物自愈水泥中加入1%的自愈剂,可显著提高砂浆砌块抗水渗透压力的能力。与标准试样相比,抗水渗透能力在28 d时提高了29.2%,84 d时进一步提高到39.3%。微生物自愈水泥可以有效地恢复砂浆砌块修复裂缝后的抗水渗透性能。其修复效果明显优于水泥结晶材料的混合或涂抹方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cracks Repairing and Resistance to Water Penetration Properties of Microbial Self-Healing Cement

Cracks Repairing and Resistance to Water Penetration Properties of Microbial Self-Healing Cement

This study focuses on applying microbial self-healing cement in repairing cracks in cement-based materials and enhancing its resistance to water penetration performance. Traditional cement is susceptible to environmental influences, leading to the formation of microcracks and a reduction in durability. This research used Bacillus pseudofirmus to prepare microcapsules through sodium alginate gelation technology. We mixed microcapsules into the cement. The results indicate that the microbial self-healing cement, with a 1% self-healing agent added, increased its resistance to water penetration ability by 29.2% after 28 days. This improvement rose to 39.3% after 84 days. Additionally, we used the embedded needle method to make mortar blocks through microcracks, mimicking the cracks found in real cement. The self-healing effect of the microcapsules was especially noticeable for cracks under 0.3 mm in diameter, compared to the commonly used commercial crystallization penetration technology. This is attributed to the crystalline bodies formed by the self-healing agent in the microcapsules blocking the cracks and preventing water penetration. This study provides an environmentally friendly solution for the repair of cracks in cement-based materials using microbial self-healing technology and lays the foundation for improving the repair efficiency and durability and exploring stability and reliability in the future.

Practical Application: This study investigated the application of microbial self-healing cement in repairing cracks in cement-based materials and enhancing its resistance to water penetration properties. Cement, a material widely used in infrastructure, has low tensile strength and often forms microcracks. These microcracks reducing the durability of cement and posing risks to the economy and safety. Adding 1% self-healing agent to microbial self-healing cement significantly increases the resistance to water penetration pressure of the mortar blocks. Compared to the standard specimens, the resistance to water penetration ability increased by 29.2% at 28 days and further increased to 39.3% at 84 days. Microbial self-healing cement could effectively restore the resistance to water penetration performance of the mortar blocks after repairing cracks. The repairing results are significantly better than the methods of mixing or applying cement crystalline materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering in Life Sciences
Engineering in Life Sciences 工程技术-生物工程与应用微生物
CiteScore
6.40
自引率
3.70%
发文量
81
审稿时长
3 months
期刊介绍: Engineering in Life Sciences (ELS) focuses on engineering principles and innovations in life sciences and biotechnology. Life sciences and biotechnology covered in ELS encompass the use of biomolecules (e.g. proteins/enzymes), cells (microbial, plant and mammalian origins) and biomaterials for biosynthesis, biotransformation, cell-based treatment and bio-based solutions in industrial and pharmaceutical biotechnologies as well as in biomedicine. ELS especially aims to promote interdisciplinary collaborations among biologists, biotechnologists and engineers for quantitative understanding and holistic engineering (design-built-test) of biological parts and processes in the different application areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信