Theo Douvropoulos, Joel Brewster Lewis, Alejandro H. Morales
{"title":"反射群的Hurwitz数III:统一公式","authors":"Theo Douvropoulos, Joel Brewster Lewis, Alejandro H. Morales","doi":"10.1112/jlms.70102","DOIUrl":null,"url":null,"abstract":"<p>We give uniform formulae for the number of full reflection factorizations of a parabolic quasi-Coxeter element in a Weyl group or complex reflection group, generalizing the formula for the genus-0 Hurwitz numbers. This paper is the culmination of a series of three.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70102","citationCount":"0","resultStr":"{\"title\":\"Hurwitz numbers for reflection groups III: Uniform formulae\",\"authors\":\"Theo Douvropoulos, Joel Brewster Lewis, Alejandro H. Morales\",\"doi\":\"10.1112/jlms.70102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give uniform formulae for the number of full reflection factorizations of a parabolic quasi-Coxeter element in a Weyl group or complex reflection group, generalizing the formula for the genus-0 Hurwitz numbers. This paper is the culmination of a series of three.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70102\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70102\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70102","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Hurwitz numbers for reflection groups III: Uniform formulae
We give uniform formulae for the number of full reflection factorizations of a parabolic quasi-Coxeter element in a Weyl group or complex reflection group, generalizing the formula for the genus-0 Hurwitz numbers. This paper is the culmination of a series of three.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.