反射群的Hurwitz数III:统一公式

IF 1 2区 数学 Q1 MATHEMATICS
Theo Douvropoulos, Joel Brewster Lewis, Alejandro H. Morales
{"title":"反射群的Hurwitz数III:统一公式","authors":"Theo Douvropoulos,&nbsp;Joel Brewster Lewis,&nbsp;Alejandro H. Morales","doi":"10.1112/jlms.70102","DOIUrl":null,"url":null,"abstract":"<p>We give uniform formulae for the number of full reflection factorizations of a parabolic quasi-Coxeter element in a Weyl group or complex reflection group, generalizing the formula for the genus-0 Hurwitz numbers. This paper is the culmination of a series of three.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"111 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70102","citationCount":"0","resultStr":"{\"title\":\"Hurwitz numbers for reflection groups III: Uniform formulae\",\"authors\":\"Theo Douvropoulos,&nbsp;Joel Brewster Lewis,&nbsp;Alejandro H. Morales\",\"doi\":\"10.1112/jlms.70102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give uniform formulae for the number of full reflection factorizations of a parabolic quasi-Coxeter element in a Weyl group or complex reflection group, generalizing the formula for the genus-0 Hurwitz numbers. This paper is the culmination of a series of three.</p>\",\"PeriodicalId\":49989,\"journal\":{\"name\":\"Journal of the London Mathematical Society-Second Series\",\"volume\":\"111 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.70102\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the London Mathematical Society-Second Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70102\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.70102","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

推广了属0 Hurwitz数的公式,给出了Weyl群或复反射群中抛物型拟coxeter元的全反射分解数的统一公式。这篇论文是三篇系列文章的高潮。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Hurwitz numbers for reflection groups III: Uniform formulae

Hurwitz numbers for reflection groups III: Uniform formulae

We give uniform formulae for the number of full reflection factorizations of a parabolic quasi-Coxeter element in a Weyl group or complex reflection group, generalizing the formula for the genus-0 Hurwitz numbers. This paper is the culmination of a series of three.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
186
审稿时长
6-12 weeks
期刊介绍: The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信