{"title":"可调谐太赫兹边缘耦合石墨烯定向耦合器:石墨烯特性的一般分析","authors":"Victor Dmitriev, Melryan Moraes","doi":"10.1002/mop.70159","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A surface plasmon-polariton graphene waveguide directional couplers for THz region are discussed in this paper. The device has a very simple structure. The central part of it presents two side-coupled parallel graphene nanoribbons with a small gap between them. The graphene waveguides are deposited on a dielectric substrate. In one of the presented examples, the proposed 3 dB coupler has a 25% fractional bandwidth centered at 3.8 THz with isolation and return losses better than −17 dB. By changing the Fermi energy of graphene, the power division in a given frequency range can be dynamically controlled or, alternatively, a frequency band of the coupler with a fixed power division can be dislocated. The discussion is fulfilled in terms of the so-called frequency reference point corresponding to a 3-dB coupler. We determine also the limits of possible coupler parameters tuning in the frequency range from 2 to 8 THz. The suggested general analysis can be useful in the design of graphene couplers for high-density integrated THz circuit.</p>\n </div>","PeriodicalId":18562,"journal":{"name":"Microwave and Optical Technology Letters","volume":"67 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable THz Edge-Coupled Graphene Directional Couplers: A General Analysis Resulting From Graphene Properties\",\"authors\":\"Victor Dmitriev, Melryan Moraes\",\"doi\":\"10.1002/mop.70159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A surface plasmon-polariton graphene waveguide directional couplers for THz region are discussed in this paper. The device has a very simple structure. The central part of it presents two side-coupled parallel graphene nanoribbons with a small gap between them. The graphene waveguides are deposited on a dielectric substrate. In one of the presented examples, the proposed 3 dB coupler has a 25% fractional bandwidth centered at 3.8 THz with isolation and return losses better than −17 dB. By changing the Fermi energy of graphene, the power division in a given frequency range can be dynamically controlled or, alternatively, a frequency band of the coupler with a fixed power division can be dislocated. The discussion is fulfilled in terms of the so-called frequency reference point corresponding to a 3-dB coupler. We determine also the limits of possible coupler parameters tuning in the frequency range from 2 to 8 THz. The suggested general analysis can be useful in the design of graphene couplers for high-density integrated THz circuit.</p>\\n </div>\",\"PeriodicalId\":18562,\"journal\":{\"name\":\"Microwave and Optical Technology Letters\",\"volume\":\"67 3\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microwave and Optical Technology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mop.70159\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microwave and Optical Technology Letters","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mop.70159","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Tunable THz Edge-Coupled Graphene Directional Couplers: A General Analysis Resulting From Graphene Properties
A surface plasmon-polariton graphene waveguide directional couplers for THz region are discussed in this paper. The device has a very simple structure. The central part of it presents two side-coupled parallel graphene nanoribbons with a small gap between them. The graphene waveguides are deposited on a dielectric substrate. In one of the presented examples, the proposed 3 dB coupler has a 25% fractional bandwidth centered at 3.8 THz with isolation and return losses better than −17 dB. By changing the Fermi energy of graphene, the power division in a given frequency range can be dynamically controlled or, alternatively, a frequency band of the coupler with a fixed power division can be dislocated. The discussion is fulfilled in terms of the so-called frequency reference point corresponding to a 3-dB coupler. We determine also the limits of possible coupler parameters tuning in the frequency range from 2 to 8 THz. The suggested general analysis can be useful in the design of graphene couplers for high-density integrated THz circuit.
期刊介绍:
Microwave and Optical Technology Letters provides quick publication (3 to 6 month turnaround) of the most recent findings and achievements in high frequency technology, from RF to optical spectrum. The journal publishes original short papers and letters on theoretical, applied, and system results in the following areas.
- RF, Microwave, and Millimeter Waves
- Antennas and Propagation
- Submillimeter-Wave and Infrared Technology
- Optical Engineering
All papers are subject to peer review before publication