剪切过程中土壤-金属界面的声发射行为:微观到宏观的见解

IF 2.9 3区 工程技术
Satyam Dey, Prashanth Vangla
{"title":"剪切过程中土壤-金属界面的声发射行为:微观到宏观的见解","authors":"Satyam Dey,&nbsp;Prashanth Vangla","doi":"10.1007/s10035-025-01516-9","DOIUrl":null,"url":null,"abstract":"<div><p>The study of acoustic emissions (AE) at soil-metal interfaces has gained increasing attention in geotechnical engineering due to its potential for developing acoustic-based early warning systems for structural stability and safety monitoring. Existing studies have paid limited attention to the fundamental mechanisms underlying soil-metal interface shearing across micro to macro scales and their associated acoustic emissions (AE). This study investigated the soil-metal interface shear and their AE responses through systematic tests using macromechanical and micromechanical interface shear testing apparatus, critically analyzing the shear response, geotribological aspects, and AE responses in the time and frequency domains to gain deeper insights and understand their interrelationships. The results revealed that soil-metal interface shear response and AE intensity (amplitude and frequency content) increased as normal stress and particle angularity increased. Unlike the shear response, the increase in displacement rate leads to a considerable increase in AE. Furthermore, the analysis of the test results reveal that the AE of soil-metal interfaces are strongly affected by the hardness of the continuum material, which, in turn, governs particle breakage and shear-induced surface changes during shearing. The novel micromechanical shear tests revealed that there is no AE during plowing, strain softening, or hardening; emissions are only observed when asperity breakage occurs, followed by micro-tapping during shearing. The findings of this study significantly advance the understanding of soil-structure interaction from an AE perspective and contribute to the design of efficient AE-based early warning devices.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acoustic emission behaviour at soil–metal interfaces during shearing: micro to macro insights\",\"authors\":\"Satyam Dey,&nbsp;Prashanth Vangla\",\"doi\":\"10.1007/s10035-025-01516-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The study of acoustic emissions (AE) at soil-metal interfaces has gained increasing attention in geotechnical engineering due to its potential for developing acoustic-based early warning systems for structural stability and safety monitoring. Existing studies have paid limited attention to the fundamental mechanisms underlying soil-metal interface shearing across micro to macro scales and their associated acoustic emissions (AE). This study investigated the soil-metal interface shear and their AE responses through systematic tests using macromechanical and micromechanical interface shear testing apparatus, critically analyzing the shear response, geotribological aspects, and AE responses in the time and frequency domains to gain deeper insights and understand their interrelationships. The results revealed that soil-metal interface shear response and AE intensity (amplitude and frequency content) increased as normal stress and particle angularity increased. Unlike the shear response, the increase in displacement rate leads to a considerable increase in AE. Furthermore, the analysis of the test results reveal that the AE of soil-metal interfaces are strongly affected by the hardness of the continuum material, which, in turn, governs particle breakage and shear-induced surface changes during shearing. The novel micromechanical shear tests revealed that there is no AE during plowing, strain softening, or hardening; emissions are only observed when asperity breakage occurs, followed by micro-tapping during shearing. The findings of this study significantly advance the understanding of soil-structure interaction from an AE perspective and contribute to the design of efficient AE-based early warning devices.</p></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"27 2\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-025-01516-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01516-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

土-金属界面声发射的研究在岩土工程中越来越受到重视,因为它具有开发基于声学的结构稳定性和安全监测预警系统的潜力。现有研究对微观到宏观尺度上土-金属界面剪切的基本机制及其相关声发射的关注有限。本研究采用宏观力学和微观力学界面剪切试验装置,对土-金属界面剪切及其声发射响应进行了系统的试验研究,在时间和频域上对剪切响应、地摩擦学方面和声发射响应进行了批判性的分析,以更深入地了解它们之间的相互关系。结果表明:土-金属界面剪切响应和声发射强度(振幅和频率含量)随正应力和颗粒角度的增大而增大;与剪切响应不同,位移速率的增加导致声发射的显著增加。此外,试验结果分析表明,连续介质材料的硬度对土-金属界面声发射有强烈的影响,而硬度又决定了剪切过程中颗粒的破坏和剪切引起的表面变化。新型微力学剪切试验表明,在犁耕、应变软化和硬化过程中没有声发射;只有在发生尖头断裂时才会观察到排放物,随后在剪切过程中出现微攻丝。本研究结果有助于从声发射角度理解土-结构相互作用,并有助于设计高效的声发射预警装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Acoustic emission behaviour at soil–metal interfaces during shearing: micro to macro insights

The study of acoustic emissions (AE) at soil-metal interfaces has gained increasing attention in geotechnical engineering due to its potential for developing acoustic-based early warning systems for structural stability and safety monitoring. Existing studies have paid limited attention to the fundamental mechanisms underlying soil-metal interface shearing across micro to macro scales and their associated acoustic emissions (AE). This study investigated the soil-metal interface shear and their AE responses through systematic tests using macromechanical and micromechanical interface shear testing apparatus, critically analyzing the shear response, geotribological aspects, and AE responses in the time and frequency domains to gain deeper insights and understand their interrelationships. The results revealed that soil-metal interface shear response and AE intensity (amplitude and frequency content) increased as normal stress and particle angularity increased. Unlike the shear response, the increase in displacement rate leads to a considerable increase in AE. Furthermore, the analysis of the test results reveal that the AE of soil-metal interfaces are strongly affected by the hardness of the continuum material, which, in turn, governs particle breakage and shear-induced surface changes during shearing. The novel micromechanical shear tests revealed that there is no AE during plowing, strain softening, or hardening; emissions are only observed when asperity breakage occurs, followed by micro-tapping during shearing. The findings of this study significantly advance the understanding of soil-structure interaction from an AE perspective and contribute to the design of efficient AE-based early warning devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信