直接单剪试验中试样和颗粒尺寸影响的DEM研究

IF 2.9 3区 工程技术
Mohammad Zeraati-Shamsabadi, Abouzar Sadrekarimi
{"title":"直接单剪试验中试样和颗粒尺寸影响的DEM研究","authors":"Mohammad Zeraati-Shamsabadi,&nbsp;Abouzar Sadrekarimi","doi":"10.1007/s10035-025-01513-y","DOIUrl":null,"url":null,"abstract":"<div><p>The direct simple shear (DSS) test serves as a vital method in geotechnics, allowing the measurement of peak and post-liquefaction shear strengths, along with the critical state friction angle of soils. Additionally, the simple shearing mode applied in a DSS test is the predominant failure mode in many geotechnical engineering problems. Although the DSS test is widely used to determine soil strength, a significant challenge with the DSS device is the non-uniformity of stress and strain distributions at the specimen boundaries. This non-uniformity depends on not only the specimen size but also the size of soil particles. The influence of specimen size on boundary effects is typically evaluated using the ratio of specimen diameter (<i>D</i>) to height (<i>H</i>). The median particle diameter (<i>D</i><sub><i>50</i></sub>), as an indicator of a soil’s particle size, could be another influential factor affecting the non-uniformities of stress and strain on specimen boundaries in a DSS test. Through three-dimensional discrete element method (DEM) simulations, this research explores these factors. Specimens were generated with a particle size distribution (PSD) scaled from a coarse sand sample. Laboratory monotonic DSS testing results on the coarse sand were employed to calibrate the DEM model and ascertain the modeling parameters. Boundary displacements were regulated to maintain a constant-volume condition which represents undrained shearing behavior. Various specimen diameters were simulated with identical void ratios to investigate the influence of <i>D/H</i> on stress path, peak and post-peak shear strengths, and critical state behavior. DEM simulations allowed the generation of several particle size distributions through different scaling factors applied to the sand gradation to determine the combined effect <i>D</i><sub><i>50</i></sub> and <i>D/H</i>. Limiting <i>D/H</i> and <i>D</i><sub><i>50</i></sub><i>/D</i> ratios are subsequently proposed to mitigate specimen boundary effects.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A DEM study on the effects of specimen and particle sizes on direct simple shear tests\",\"authors\":\"Mohammad Zeraati-Shamsabadi,&nbsp;Abouzar Sadrekarimi\",\"doi\":\"10.1007/s10035-025-01513-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The direct simple shear (DSS) test serves as a vital method in geotechnics, allowing the measurement of peak and post-liquefaction shear strengths, along with the critical state friction angle of soils. Additionally, the simple shearing mode applied in a DSS test is the predominant failure mode in many geotechnical engineering problems. Although the DSS test is widely used to determine soil strength, a significant challenge with the DSS device is the non-uniformity of stress and strain distributions at the specimen boundaries. This non-uniformity depends on not only the specimen size but also the size of soil particles. The influence of specimen size on boundary effects is typically evaluated using the ratio of specimen diameter (<i>D</i>) to height (<i>H</i>). The median particle diameter (<i>D</i><sub><i>50</i></sub>), as an indicator of a soil’s particle size, could be another influential factor affecting the non-uniformities of stress and strain on specimen boundaries in a DSS test. Through three-dimensional discrete element method (DEM) simulations, this research explores these factors. Specimens were generated with a particle size distribution (PSD) scaled from a coarse sand sample. Laboratory monotonic DSS testing results on the coarse sand were employed to calibrate the DEM model and ascertain the modeling parameters. Boundary displacements were regulated to maintain a constant-volume condition which represents undrained shearing behavior. Various specimen diameters were simulated with identical void ratios to investigate the influence of <i>D/H</i> on stress path, peak and post-peak shear strengths, and critical state behavior. DEM simulations allowed the generation of several particle size distributions through different scaling factors applied to the sand gradation to determine the combined effect <i>D</i><sub><i>50</i></sub> and <i>D/H</i>. Limiting <i>D/H</i> and <i>D</i><sub><i>50</i></sub><i>/D</i> ratios are subsequently proposed to mitigate specimen boundary effects.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"27 2\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-025-01513-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-025-01513-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

直接单剪(DSS)试验是岩土工程中一种重要的试验方法,它可以测量土体的峰值抗剪强度和液化后抗剪强度以及临界状态摩擦角。此外,DSS试验中采用的简单剪切模式是许多岩土工程问题的主要破坏模式。虽然DSS试验被广泛用于确定土的强度,但DSS装置的一个重大挑战是试样边界应力和应变分布的不均匀性。这种不均匀性不仅取决于试样的大小,而且取决于土壤颗粒的大小。试样尺寸对边界效应的影响通常使用试样直径(D)与高度(H)的比值来评估。中位粒径(D50)作为土壤粒径的指标,可能是影响DSS试验中试样边界应力和应变不均匀性的另一个影响因素。本研究通过三维离散元法(DEM)模拟,探讨了这些因素。从粗砂样品中按比例生成粒径分布(PSD)的试样。利用室内粗砂单调DSS试验结果对DEM模型进行标定,确定建模参数。边界位移被调节为保持一个恒定的体积条件,这代表了不排水的剪切行为。在相同孔隙率下,模拟不同试件直径,研究D/H对应力路径、峰后抗剪强度和临界状态行为的影响。DEM模拟通过对砂级配施加不同的比例因子,生成了几种粒度分布,从而确定了D50和D/H的综合效应。随后提出限制D/H和D50/D比率以减轻试样边界效应。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A DEM study on the effects of specimen and particle sizes on direct simple shear tests

A DEM study on the effects of specimen and particle sizes on direct simple shear tests

The direct simple shear (DSS) test serves as a vital method in geotechnics, allowing the measurement of peak and post-liquefaction shear strengths, along with the critical state friction angle of soils. Additionally, the simple shearing mode applied in a DSS test is the predominant failure mode in many geotechnical engineering problems. Although the DSS test is widely used to determine soil strength, a significant challenge with the DSS device is the non-uniformity of stress and strain distributions at the specimen boundaries. This non-uniformity depends on not only the specimen size but also the size of soil particles. The influence of specimen size on boundary effects is typically evaluated using the ratio of specimen diameter (D) to height (H). The median particle diameter (D50), as an indicator of a soil’s particle size, could be another influential factor affecting the non-uniformities of stress and strain on specimen boundaries in a DSS test. Through three-dimensional discrete element method (DEM) simulations, this research explores these factors. Specimens were generated with a particle size distribution (PSD) scaled from a coarse sand sample. Laboratory monotonic DSS testing results on the coarse sand were employed to calibrate the DEM model and ascertain the modeling parameters. Boundary displacements were regulated to maintain a constant-volume condition which represents undrained shearing behavior. Various specimen diameters were simulated with identical void ratios to investigate the influence of D/H on stress path, peak and post-peak shear strengths, and critical state behavior. DEM simulations allowed the generation of several particle size distributions through different scaling factors applied to the sand gradation to determine the combined effect D50 and D/H. Limiting D/H and D50/D ratios are subsequently proposed to mitigate specimen boundary effects.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信