CaLaSnFeO6钙钛矿的晶体、磁性和光学性质

IF 1.6 4区 物理与天体物理 Q3 PHYSICS, APPLIED
X. A. Velásquez Moya, J. C. Rincón Fajardo, S. G. Posada Barragán, S. J. Niño Peña, T. N. Quispe Crisolo, A. Moreno Sánchez, A. N. Morales Carreño, C. E. Deluque Toro, D. A. Landínez Téllez, L. de Los Santos Valladares, C. H. W. Barnes, S. Holmes, J. Roa-Rojas
{"title":"CaLaSnFeO6钙钛矿的晶体、磁性和光学性质","authors":"X. A. Velásquez Moya,&nbsp;J. C. Rincón Fajardo,&nbsp;S. G. Posada Barragán,&nbsp;S. J. Niño Peña,&nbsp;T. N. Quispe Crisolo,&nbsp;A. Moreno Sánchez,&nbsp;A. N. Morales Carreño,&nbsp;C. E. Deluque Toro,&nbsp;D. A. Landínez Téllez,&nbsp;L. de Los Santos Valladares,&nbsp;C. H. W. Barnes,&nbsp;S. Holmes,&nbsp;J. Roa-Rojas","doi":"10.1007/s10948-025-06902-1","DOIUrl":null,"url":null,"abstract":"<div><p>In order to obtain new materials with multifunctional properties, CaLaSnFeO<sub>6</sub> samples were synthesized by the solid reaction technique. Structural analysis was performed by X-ray diffraction technique. Rietveld refinement of the experimental data revealed that these materials crystallize in a perovskite-type monoclinic structure (P2<sub>1</sub>/n, space group #14) with alternating arrangement of Fe-Sn cations along the three crystallographic axes. The strongly granular character of the surface of the material was observed by scanning electron microscopy micrographs. X-ray energy dispersive spectra exhibited a close correspondence of the composition of the samples with that expected from their stoichiometric formula. Magnetic characterization in the temperature regime 50 K &lt; T &lt; 325 K and applied fields up to 30 kOe suggests the occurrence of a ferromagnetic ordering with Curie temperature T<sub>C</sub> = 204 K. Diffuse reflectance spectra revealed the semiconducting characteristic of the CaLaSnFeO<sub>6</sub> double perovskite with a bandgap of E<sub>g</sub> = 2.33 eV. To establish the origin of the magnetic interactions, electronic structure calculations were performed in the vicinity of the Fermi level by means of the Density Functional Theory. These properties generate technological expectations in the spintronics industry for the production of information storage devices on magnetic media based on polarized spin currents such as spin valves and magnetic transistors.</p></div>","PeriodicalId":669,"journal":{"name":"Journal of Superconductivity and Novel Magnetism","volume":"38 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10948-025-06902-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Crystalline, Magnetic and Optical Properties of the CaLaSnFeO6 Perovskite\",\"authors\":\"X. A. Velásquez Moya,&nbsp;J. C. Rincón Fajardo,&nbsp;S. G. Posada Barragán,&nbsp;S. J. Niño Peña,&nbsp;T. N. Quispe Crisolo,&nbsp;A. Moreno Sánchez,&nbsp;A. N. Morales Carreño,&nbsp;C. E. Deluque Toro,&nbsp;D. A. Landínez Téllez,&nbsp;L. de Los Santos Valladares,&nbsp;C. H. W. Barnes,&nbsp;S. Holmes,&nbsp;J. Roa-Rojas\",\"doi\":\"10.1007/s10948-025-06902-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to obtain new materials with multifunctional properties, CaLaSnFeO<sub>6</sub> samples were synthesized by the solid reaction technique. Structural analysis was performed by X-ray diffraction technique. Rietveld refinement of the experimental data revealed that these materials crystallize in a perovskite-type monoclinic structure (P2<sub>1</sub>/n, space group #14) with alternating arrangement of Fe-Sn cations along the three crystallographic axes. The strongly granular character of the surface of the material was observed by scanning electron microscopy micrographs. X-ray energy dispersive spectra exhibited a close correspondence of the composition of the samples with that expected from their stoichiometric formula. Magnetic characterization in the temperature regime 50 K &lt; T &lt; 325 K and applied fields up to 30 kOe suggests the occurrence of a ferromagnetic ordering with Curie temperature T<sub>C</sub> = 204 K. Diffuse reflectance spectra revealed the semiconducting characteristic of the CaLaSnFeO<sub>6</sub> double perovskite with a bandgap of E<sub>g</sub> = 2.33 eV. To establish the origin of the magnetic interactions, electronic structure calculations were performed in the vicinity of the Fermi level by means of the Density Functional Theory. These properties generate technological expectations in the spintronics industry for the production of information storage devices on magnetic media based on polarized spin currents such as spin valves and magnetic transistors.</p></div>\",\"PeriodicalId\":669,\"journal\":{\"name\":\"Journal of Superconductivity and Novel Magnetism\",\"volume\":\"38 2\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10948-025-06902-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Superconductivity and Novel Magnetism\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10948-025-06902-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Superconductivity and Novel Magnetism","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10948-025-06902-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

为了获得具有多功能性能的新材料,采用固相反应技术合成了CaLaSnFeO6样品。采用x射线衍射技术进行结构分析。Rietveld细化实验数据表明,这些材料结晶为钙钛矿型单斜晶型结构(P21/n,空间群#14),Fe-Sn阳离子沿三个结晶轴交替排列。通过扫描电镜观察到材料表面的强颗粒特征。x射线能量色散谱显示样品的组成与化学计量公式的预期密切对应。在50 K <; T <; 325 K的温度范围和高达30 kOe的磁场中,磁性表征表明,在居里温度TC = 204 K时,铁磁有序存在。漫反射光谱显示CaLaSnFeO6双钙钛矿具有半导体特性,带隙为Eg = 2.33 eV。为了确定磁相互作用的起源,利用密度泛函理论在费米能级附近进行了电子结构计算。这些特性在自旋电子学工业中产生了技术期望,即基于极化自旋电流的磁介质上生产信息存储设备,如自旋阀和磁性晶体管。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crystalline, Magnetic and Optical Properties of the CaLaSnFeO6 Perovskite

In order to obtain new materials with multifunctional properties, CaLaSnFeO6 samples were synthesized by the solid reaction technique. Structural analysis was performed by X-ray diffraction technique. Rietveld refinement of the experimental data revealed that these materials crystallize in a perovskite-type monoclinic structure (P21/n, space group #14) with alternating arrangement of Fe-Sn cations along the three crystallographic axes. The strongly granular character of the surface of the material was observed by scanning electron microscopy micrographs. X-ray energy dispersive spectra exhibited a close correspondence of the composition of the samples with that expected from their stoichiometric formula. Magnetic characterization in the temperature regime 50 K < T < 325 K and applied fields up to 30 kOe suggests the occurrence of a ferromagnetic ordering with Curie temperature TC = 204 K. Diffuse reflectance spectra revealed the semiconducting characteristic of the CaLaSnFeO6 double perovskite with a bandgap of Eg = 2.33 eV. To establish the origin of the magnetic interactions, electronic structure calculations were performed in the vicinity of the Fermi level by means of the Density Functional Theory. These properties generate technological expectations in the spintronics industry for the production of information storage devices on magnetic media based on polarized spin currents such as spin valves and magnetic transistors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Superconductivity and Novel Magnetism
Journal of Superconductivity and Novel Magnetism 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.10%
发文量
342
审稿时长
3.5 months
期刊介绍: The Journal of Superconductivity and Novel Magnetism serves as the international forum for the most current research and ideas in these fields. This highly acclaimed journal publishes peer-reviewed original papers, conference proceedings and invited review articles that examine all aspects of the science and technology of superconductivity, including new materials, new mechanisms, basic and technological properties, new phenomena, and small- and large-scale applications. Novel magnetism, which is expanding rapidly, is also featured in the journal. The journal focuses on such areas as spintronics, magnetic semiconductors, properties of magnetic multilayers, magnetoresistive materials and structures, magnetic oxides, etc. Novel superconducting and magnetic materials are complex compounds, and the journal publishes articles related to all aspects their study, such as sample preparation, spectroscopy and transport properties as well as various applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信