噪声和混响环境下基于盲提取的多通道语音增强

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yuan Xie;Tao Zou;Weijun Sun;Shengli Xie
{"title":"噪声和混响环境下基于盲提取的多通道语音增强","authors":"Yuan Xie;Tao Zou;Weijun Sun;Shengli Xie","doi":"10.1109/LSENS.2025.3533642","DOIUrl":null,"url":null,"abstract":"Speech enhancement has important applications in sensor, hearing aids, robotics, and video conferencing. However, the speech enhancement performance is severely deteriorated by additional background noise and high reverberations. To solve the problem of speech enhancement in noisy and acoustically reverberant scenarios, this letter proposes a multichannel speech enhancement algorithm based on blind extraction to achieve speech denoising and dereverberation. First, a new model for speech enhancement is constructed by assuming the reverberations generated by later reflections as additional and unrelated noise components. Subsequently, a blind signal extraction approach is designed to extract the direct sound and early reflected sounds, achieving dereverberation and denoising. Experimental results confirm that the proposed algorithm achieves better speech enhancement in noisy and acoustic reverberation scenarios and that the effect of dereverberation and noise reduction is superior to that of popular speech enhancement algorithms, especially in high reverberation environments.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 3","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind Extraction-Based Multichannel Speech Enhancement in Noisy and Reverberation Environments\",\"authors\":\"Yuan Xie;Tao Zou;Weijun Sun;Shengli Xie\",\"doi\":\"10.1109/LSENS.2025.3533642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speech enhancement has important applications in sensor, hearing aids, robotics, and video conferencing. However, the speech enhancement performance is severely deteriorated by additional background noise and high reverberations. To solve the problem of speech enhancement in noisy and acoustically reverberant scenarios, this letter proposes a multichannel speech enhancement algorithm based on blind extraction to achieve speech denoising and dereverberation. First, a new model for speech enhancement is constructed by assuming the reverberations generated by later reflections as additional and unrelated noise components. Subsequently, a blind signal extraction approach is designed to extract the direct sound and early reflected sounds, achieving dereverberation and denoising. Experimental results confirm that the proposed algorithm achieves better speech enhancement in noisy and acoustic reverberation scenarios and that the effect of dereverberation and noise reduction is superior to that of popular speech enhancement algorithms, especially in high reverberation environments.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 3\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10852284/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10852284/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

语音增强在传感器、助听器、机器人和视频会议中有着重要的应用。但是,附加的背景噪声和高混响会严重影响语音增强的性能。为了解决噪声和声混响场景下的语音增强问题,本文提出了一种基于盲提取的多通道语音增强算法,实现语音去噪和去噪。首先,通过假设后反射产生的混响为附加的和不相关的噪声分量,构建了一个新的语音增强模型。然后设计盲信号提取方法,提取直接声和早期反射声,实现去噪降噪。实验结果表明,该算法在噪声和混响环境下均能取得较好的语音增强效果,去噪降噪效果优于现有的语音增强算法,特别是在高混响环境下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind Extraction-Based Multichannel Speech Enhancement in Noisy and Reverberation Environments
Speech enhancement has important applications in sensor, hearing aids, robotics, and video conferencing. However, the speech enhancement performance is severely deteriorated by additional background noise and high reverberations. To solve the problem of speech enhancement in noisy and acoustically reverberant scenarios, this letter proposes a multichannel speech enhancement algorithm based on blind extraction to achieve speech denoising and dereverberation. First, a new model for speech enhancement is constructed by assuming the reverberations generated by later reflections as additional and unrelated noise components. Subsequently, a blind signal extraction approach is designed to extract the direct sound and early reflected sounds, achieving dereverberation and denoising. Experimental results confirm that the proposed algorithm achieves better speech enhancement in noisy and acoustic reverberation scenarios and that the effect of dereverberation and noise reduction is superior to that of popular speech enhancement algorithms, especially in high reverberation environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信