Guoyu Yang , Chenpeng Dong , Zhaoxi Wu , Peng Wu , Cao Yang , Lanlan Li , Jianxiang Zhang , Xinghuo Wu
{"title":"Single-cell RNA sequencing-guided engineering of mitochondrial therapies for intervertebral disc degeneration by regulating mtDNA/SPARC-STING signaling","authors":"Guoyu Yang , Chenpeng Dong , Zhaoxi Wu , Peng Wu , Cao Yang , Lanlan Li , Jianxiang Zhang , Xinghuo Wu","doi":"10.1016/j.bioactmat.2025.02.036","DOIUrl":null,"url":null,"abstract":"<div><div>Intervertebral disc degeneration (IVDD) is a leading cause of discogenic low back pain, contributing significantly to global disability and economic burden. Current treatments provide only short-term pain relief without addressing the underlying pathogenesis. Herein we report engineering of biomimetic therapies for IVDD guided by single-cell RNA-sequencing data from human nucleus pulposus tissues, along with validation using animal models. In-depth analyses revealed the critical role of mitochondrial dysfunction in fibrotic phenotype polarization of nucleus pulposus cells (NPCs) during IVDD progression. Consequently, mitochondrial transplantation was proposed as a novel therapeutic strategy. Transplanted exogeneous mitochondria improved mitochondrial quality control in NPCs under pathological conditions, following endocytosis, separate distribution or fusion with endogenous mitochondria, and transfer to neighboring cells by tunneling nanotubes. Correspondingly, intradiscal mitochondrial transplantation significantly delayed puncture-induced IVDD progression in rats, demonstrating efficacy in maintaining mitochondrial homeostasis and alleviating pathological abnormalities. Furthermore, exogenous mitochondria were engineered with a bioactive, mitochondrial-targeting macromolecule to impart anti-oxidative and anti-inflammatory activities. The obtained multi-bioactive biotherapy exhibited significantly enhanced benefits in IVDD treatment, in terms of reversing IVDD progression and restoring structural integrity through the mtDNA/SPARC-STING signaling pathways. Overall, our engineered mitochondrial therapies hold great promise for treating IVDD and other musculoskeletal diseases linked to mitochondrial dysfunction.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"48 ","pages":"Pages 564-582"},"PeriodicalIF":18.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25000921","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Single-cell RNA sequencing-guided engineering of mitochondrial therapies for intervertebral disc degeneration by regulating mtDNA/SPARC-STING signaling
Intervertebral disc degeneration (IVDD) is a leading cause of discogenic low back pain, contributing significantly to global disability and economic burden. Current treatments provide only short-term pain relief without addressing the underlying pathogenesis. Herein we report engineering of biomimetic therapies for IVDD guided by single-cell RNA-sequencing data from human nucleus pulposus tissues, along with validation using animal models. In-depth analyses revealed the critical role of mitochondrial dysfunction in fibrotic phenotype polarization of nucleus pulposus cells (NPCs) during IVDD progression. Consequently, mitochondrial transplantation was proposed as a novel therapeutic strategy. Transplanted exogeneous mitochondria improved mitochondrial quality control in NPCs under pathological conditions, following endocytosis, separate distribution or fusion with endogenous mitochondria, and transfer to neighboring cells by tunneling nanotubes. Correspondingly, intradiscal mitochondrial transplantation significantly delayed puncture-induced IVDD progression in rats, demonstrating efficacy in maintaining mitochondrial homeostasis and alleviating pathological abnormalities. Furthermore, exogenous mitochondria were engineered with a bioactive, mitochondrial-targeting macromolecule to impart anti-oxidative and anti-inflammatory activities. The obtained multi-bioactive biotherapy exhibited significantly enhanced benefits in IVDD treatment, in terms of reversing IVDD progression and restoring structural integrity through the mtDNA/SPARC-STING signaling pathways. Overall, our engineered mitochondrial therapies hold great promise for treating IVDD and other musculoskeletal diseases linked to mitochondrial dysfunction.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.