{"title":"紧凑型纳米计量检测器的开发与特性分析","authors":"Irina Kempf , Tamara Melina Hoffmann , Jürgen Besserer , Uwe Schneider","doi":"10.1016/j.nima.2025.170337","DOIUrl":null,"url":null,"abstract":"<div><div>Nanodosimetry has the goal of modelling the biological effectiveness of different radiation qualities by using physical quantities based on ionization cluster size distributions. With the <strong>F</strong>requency of <strong>I</strong>on <strong>Re</strong>gistration (FIRE) detector a compact nanodosimeter was built and tested. Within the FIRE detector, an alpha particle ionizes propane gas molecules, which drift towards a dielectric plate hole. Inside the hole they are accelerated strongly towards the cathode and produce an electron avalanche through impact ionization. The process is similar to that of Gaseous Electron Multipliers (GEM), although positive ions are detected. However, there are several limitations with the original design, such as vacuum seal issues, fixed anode height and limited data acquisition capabilities. Consequently, an improved prototype FIRE-V2 was developed to address these constraints, along with a completely new data acquisition system. The sensitive detector volume was measured experimentally with FIRE-V2 by shifting the alpha beam laterally relative to the dielectric plate hole. Furthermore, with the new data acquisition system the signal amplitude and area as a function of experimental parameters, such as drift and cathode voltage and gas pressure were studied and compared to previous simulations.</div><div>The results presented in this work offer further insights into the inner workings of the FIRE-V2 detector and the sensitive volume of the detector was measured for the first time.</div></div>","PeriodicalId":19359,"journal":{"name":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","volume":"1075 ","pages":"Article 170337"},"PeriodicalIF":1.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and characterization of a compact nanodosimetric detector\",\"authors\":\"Irina Kempf , Tamara Melina Hoffmann , Jürgen Besserer , Uwe Schneider\",\"doi\":\"10.1016/j.nima.2025.170337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nanodosimetry has the goal of modelling the biological effectiveness of different radiation qualities by using physical quantities based on ionization cluster size distributions. With the <strong>F</strong>requency of <strong>I</strong>on <strong>Re</strong>gistration (FIRE) detector a compact nanodosimeter was built and tested. Within the FIRE detector, an alpha particle ionizes propane gas molecules, which drift towards a dielectric plate hole. Inside the hole they are accelerated strongly towards the cathode and produce an electron avalanche through impact ionization. The process is similar to that of Gaseous Electron Multipliers (GEM), although positive ions are detected. However, there are several limitations with the original design, such as vacuum seal issues, fixed anode height and limited data acquisition capabilities. Consequently, an improved prototype FIRE-V2 was developed to address these constraints, along with a completely new data acquisition system. The sensitive detector volume was measured experimentally with FIRE-V2 by shifting the alpha beam laterally relative to the dielectric plate hole. Furthermore, with the new data acquisition system the signal amplitude and area as a function of experimental parameters, such as drift and cathode voltage and gas pressure were studied and compared to previous simulations.</div><div>The results presented in this work offer further insights into the inner workings of the FIRE-V2 detector and the sensitive volume of the detector was measured for the first time.</div></div>\",\"PeriodicalId\":19359,\"journal\":{\"name\":\"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment\",\"volume\":\"1075 \",\"pages\":\"Article 170337\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016890022500138X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016890022500138X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Development and characterization of a compact nanodosimetric detector
Nanodosimetry has the goal of modelling the biological effectiveness of different radiation qualities by using physical quantities based on ionization cluster size distributions. With the Frequency of Ion Registration (FIRE) detector a compact nanodosimeter was built and tested. Within the FIRE detector, an alpha particle ionizes propane gas molecules, which drift towards a dielectric plate hole. Inside the hole they are accelerated strongly towards the cathode and produce an electron avalanche through impact ionization. The process is similar to that of Gaseous Electron Multipliers (GEM), although positive ions are detected. However, there are several limitations with the original design, such as vacuum seal issues, fixed anode height and limited data acquisition capabilities. Consequently, an improved prototype FIRE-V2 was developed to address these constraints, along with a completely new data acquisition system. The sensitive detector volume was measured experimentally with FIRE-V2 by shifting the alpha beam laterally relative to the dielectric plate hole. Furthermore, with the new data acquisition system the signal amplitude and area as a function of experimental parameters, such as drift and cathode voltage and gas pressure were studied and compared to previous simulations.
The results presented in this work offer further insights into the inner workings of the FIRE-V2 detector and the sensitive volume of the detector was measured for the first time.
期刊介绍:
Section A of Nuclear Instruments and Methods in Physics Research publishes papers on design, manufacturing and performance of scientific instruments with an emphasis on large scale facilities. This includes the development of particle accelerators, ion sources, beam transport systems and target arrangements as well as the use of secondary phenomena such as synchrotron radiation and free electron lasers. It also includes all types of instrumentation for the detection and spectrometry of radiations from high energy processes and nuclear decays, as well as instrumentation for experiments at nuclear reactors. Specialized electronics for nuclear and other types of spectrometry as well as computerization of measurements and control systems in this area also find their place in the A section.
Theoretical as well as experimental papers are accepted.