提高带升沉板的圆柱形自卸车性能的试验研究

IF 16.3 1区 工程技术 Q1 ENERGY & FUELS
Wanan Sheng
{"title":"提高带升沉板的圆柱形自卸车性能的试验研究","authors":"Wanan Sheng","doi":"10.1016/j.rser.2025.115517","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an experimental investigation to a solution on the conventional cylindrical oscillating water column (OWC) wave energy converter (WEC), with a heave plate being attached below of the cylindrical OWC. Such a simple solution could change the hydrodynamics of the cylindrical OWC device dramatically due to the significant increase of the added mass and damping coefficient to the structure motions, in particular, the natural period of the structural heave motion could be greatly increased while the natural period of the water body remains almost unchanged. As such, the enlarged difference between these two natural periods means a large relative motion between them over a wider bandwidth, hence the improved OWC could absorb wave energy more efficiently over a larger bandwidth of the wave frequencies (or periods). This is especially beneficial for the device extracting energy from ocean waves efficiently, since ocean waves inherently contain multiple periods. Meanwhile, such a solution could maintain the simplicity for the OWC structure, and a shallow draft OWC device could be possible while its energy conversion capacity is not comprised. In this work, an experimental investigation is conducted on the improved cylindrical OWC (floating), with the aims at proving the concept: with a heave plate attached to the OWC, its wave energy extraction capacity can be dramatically increased. In addition, the device motions can be effectively reduced, which is also very beneficial for the mooring and cable connections, as well as the accessibility to the device in seas, so for reducing the cost of wave energy production further.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":"214 ","pages":"Article 115517"},"PeriodicalIF":16.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An experimental study for improving performance of a cylindrical OWC WEC with a heave plate\",\"authors\":\"Wanan Sheng\",\"doi\":\"10.1016/j.rser.2025.115517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper presents an experimental investigation to a solution on the conventional cylindrical oscillating water column (OWC) wave energy converter (WEC), with a heave plate being attached below of the cylindrical OWC. Such a simple solution could change the hydrodynamics of the cylindrical OWC device dramatically due to the significant increase of the added mass and damping coefficient to the structure motions, in particular, the natural period of the structural heave motion could be greatly increased while the natural period of the water body remains almost unchanged. As such, the enlarged difference between these two natural periods means a large relative motion between them over a wider bandwidth, hence the improved OWC could absorb wave energy more efficiently over a larger bandwidth of the wave frequencies (or periods). This is especially beneficial for the device extracting energy from ocean waves efficiently, since ocean waves inherently contain multiple periods. Meanwhile, such a solution could maintain the simplicity for the OWC structure, and a shallow draft OWC device could be possible while its energy conversion capacity is not comprised. In this work, an experimental investigation is conducted on the improved cylindrical OWC (floating), with the aims at proving the concept: with a heave plate attached to the OWC, its wave energy extraction capacity can be dramatically increased. In addition, the device motions can be effectively reduced, which is also very beneficial for the mooring and cable connections, as well as the accessibility to the device in seas, so for reducing the cost of wave energy production further.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":\"214 \",\"pages\":\"Article 115517\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136403212500190X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136403212500190X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本文对传统圆柱形振荡水柱(OWC)波浪能转换器(WEC)的解法进行了实验研究,该圆柱形振荡水柱的下方附有升沉板。由于结构运动的附加质量和阻尼系数的显著增加,这种简单的解决方案可以极大地改变圆柱OWC装置的水动力特性,特别是结构升沉运动的自然周期可以大大增加,而水体的自然周期几乎保持不变。因此,这两个自然周期之间的差异增大意味着它们之间在更宽的带宽上有较大的相对运动,因此改进的OWC可以在更大的波频率(或周期)带宽上更有效地吸收波能。这对于有效地从海浪中提取能量的装置尤其有益,因为海浪本身包含多个周期。同时,这种解决方案可以保持OWC结构的简单性,并且可以在不包含能量转换能力的情况下实现浅吃水OWC装置。在这种工作,一个是在改进的圆柱形油水界面上进行试验研究(浮动),旨在证明概念:升沉板附着在油水界面,其波能源开采能力可以显著增加。此外,可以有效减少设备的运动,这对于系泊和电缆连接以及设备在海上的可及性也非常有利,从而进一步降低波浪能生产的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An experimental study for improving performance of a cylindrical OWC WEC with a heave plate
This paper presents an experimental investigation to a solution on the conventional cylindrical oscillating water column (OWC) wave energy converter (WEC), with a heave plate being attached below of the cylindrical OWC. Such a simple solution could change the hydrodynamics of the cylindrical OWC device dramatically due to the significant increase of the added mass and damping coefficient to the structure motions, in particular, the natural period of the structural heave motion could be greatly increased while the natural period of the water body remains almost unchanged. As such, the enlarged difference between these two natural periods means a large relative motion between them over a wider bandwidth, hence the improved OWC could absorb wave energy more efficiently over a larger bandwidth of the wave frequencies (or periods). This is especially beneficial for the device extracting energy from ocean waves efficiently, since ocean waves inherently contain multiple periods. Meanwhile, such a solution could maintain the simplicity for the OWC structure, and a shallow draft OWC device could be possible while its energy conversion capacity is not comprised. In this work, an experimental investigation is conducted on the improved cylindrical OWC (floating), with the aims at proving the concept: with a heave plate attached to the OWC, its wave energy extraction capacity can be dramatically increased. In addition, the device motions can be effectively reduced, which is also very beneficial for the mooring and cable connections, as well as the accessibility to the device in seas, so for reducing the cost of wave energy production further.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Renewable and Sustainable Energy Reviews
Renewable and Sustainable Energy Reviews 工程技术-能源与燃料
CiteScore
31.20
自引率
5.70%
发文量
1055
审稿时长
62 days
期刊介绍: The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change. Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信