纳米析出强化高熵合金优异的抗冲击性能

Ao Fu , Bin Liu , Zezhou Li , Tao Yang , YuanKui Cao , Junyang He , Bingfeng Wang , Jia Li , Qihong Fang , Xingwang Cheng , Marc A. Meyers , Yong Liu
{"title":"纳米析出强化高熵合金优异的抗冲击性能","authors":"Ao Fu ,&nbsp;Bin Liu ,&nbsp;Zezhou Li ,&nbsp;Tao Yang ,&nbsp;YuanKui Cao ,&nbsp;Junyang He ,&nbsp;Bingfeng Wang ,&nbsp;Jia Li ,&nbsp;Qihong Fang ,&nbsp;Xingwang Cheng ,&nbsp;Marc A. Meyers ,&nbsp;Yong Liu","doi":"10.1016/j.apmate.2025.100277","DOIUrl":null,"url":null,"abstract":"<div><div>Critical engineering applications, such as landing gears and armor protection, require structural materials withstanding high strength and significant plastic deformation. Nanoprecipitate-strengthened high-entropy alloys (HEAs) are considered as promising candidates for structural applications due to their enhanced strength and exceptional work-hardening capability. Herein, we report a FeCoNiAlTi-type HEA that achieves ultrahigh gigapascal yield strength from quasi-static to dynamic loading conditions and superb resistance to adiabatic shear failure. This is accomplished by introducing high-density coherent L1<sub>2</sub> nanoprecipitates. Multiscale characterization and molecular dynamics simulation demonstrate that the L1<sub>2</sub> nanoprecipitates exhibit multiple functions during impact, not only as the dislocation barrier and the dislocation transmission medium, but also as energy-absorbing islands that disperse the stress spikes through order-to-disorder transition, which result in extraordinary impact resistance. These findings shed light on the development of novel impact-resistant metallic materials.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 2","pages":"Article 100277"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superb impact resistance of nano-precipitation-strengthened high-entropy alloys\",\"authors\":\"Ao Fu ,&nbsp;Bin Liu ,&nbsp;Zezhou Li ,&nbsp;Tao Yang ,&nbsp;YuanKui Cao ,&nbsp;Junyang He ,&nbsp;Bingfeng Wang ,&nbsp;Jia Li ,&nbsp;Qihong Fang ,&nbsp;Xingwang Cheng ,&nbsp;Marc A. Meyers ,&nbsp;Yong Liu\",\"doi\":\"10.1016/j.apmate.2025.100277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Critical engineering applications, such as landing gears and armor protection, require structural materials withstanding high strength and significant plastic deformation. Nanoprecipitate-strengthened high-entropy alloys (HEAs) are considered as promising candidates for structural applications due to their enhanced strength and exceptional work-hardening capability. Herein, we report a FeCoNiAlTi-type HEA that achieves ultrahigh gigapascal yield strength from quasi-static to dynamic loading conditions and superb resistance to adiabatic shear failure. This is accomplished by introducing high-density coherent L1<sub>2</sub> nanoprecipitates. Multiscale characterization and molecular dynamics simulation demonstrate that the L1<sub>2</sub> nanoprecipitates exhibit multiple functions during impact, not only as the dislocation barrier and the dislocation transmission medium, but also as energy-absorbing islands that disperse the stress spikes through order-to-disorder transition, which result in extraordinary impact resistance. These findings shed light on the development of novel impact-resistant metallic materials.</div></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":\"4 2\",\"pages\":\"Article 100277\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X25000132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X25000132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

关键的工程应用,如起落架和装甲保护,需要结构材料承受高强度和显著的塑性变形。纳米沉淀强化高熵合金(HEAs)由于其增强的强度和优异的加工硬化能力而被认为是结构应用的有前途的候选者。在此,我们报道了一种feconialti型HEA,它在准静态到动态加载条件下具有超高的千帕屈服强度,并且具有极好的抗绝热剪切破坏能力。这是通过引入高密度相干L12纳米沉淀物来实现的。多尺度表征和分子动力学模拟表明,L12纳米沉淀在冲击过程中表现出多种功能,不仅是位错屏障和位错传递介质,而且作为吸收能量的岛屿,通过有序到无序的转变分散应力峰值,从而产生非凡的抗冲击性能。这些发现为新型抗冲击金属材料的开发提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Superb impact resistance of nano-precipitation-strengthened high-entropy alloys

Superb impact resistance of nano-precipitation-strengthened high-entropy alloys
Critical engineering applications, such as landing gears and armor protection, require structural materials withstanding high strength and significant plastic deformation. Nanoprecipitate-strengthened high-entropy alloys (HEAs) are considered as promising candidates for structural applications due to their enhanced strength and exceptional work-hardening capability. Herein, we report a FeCoNiAlTi-type HEA that achieves ultrahigh gigapascal yield strength from quasi-static to dynamic loading conditions and superb resistance to adiabatic shear failure. This is accomplished by introducing high-density coherent L12 nanoprecipitates. Multiscale characterization and molecular dynamics simulation demonstrate that the L12 nanoprecipitates exhibit multiple functions during impact, not only as the dislocation barrier and the dislocation transmission medium, but also as energy-absorbing islands that disperse the stress spikes through order-to-disorder transition, which result in extraordinary impact resistance. These findings shed light on the development of novel impact-resistant metallic materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信