暗能量的热力学模型,包括粒子的产生或毁灭过程

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
José Medeiros da Costa Netto, Heydson Henrique Brito da Silva
{"title":"暗能量的热力学模型,包括粒子的产生或毁灭过程","authors":"José Medeiros da Costa Netto,&nbsp;Heydson Henrique Brito da Silva","doi":"10.1016/j.cjph.2025.02.007","DOIUrl":null,"url":null,"abstract":"<div><div>Thermodynamic analyses of dark energy as a relativistic fluid indicates that this intriguing component of the universe mimics a bulk viscous pressure when the parameter of its barotropic equation of state varies with time. Since in cosmology bulk viscosity and creation or destruction of matter are closely linked processes, we propose in this work a brief thermodynamic study of dark energy considering that particles can be created or destroyed in the fluid. We derive new expressions for quantities such as particle density, entropy density etc. that have been shown to be sensitive to this new ingredient. We also obtain new thermodynamic constraints and compare them with those where the number of particles is conserved. In particular, we found that in the presence of a sink, dark energy tends towards the cosmological constant over time regardless of the sign of its chemical potential and without violating the laws of thermodynamics.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"94 ","pages":"Pages 684-689"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A thermodynamic model for dark energy including particle creation or destruction processes\",\"authors\":\"José Medeiros da Costa Netto,&nbsp;Heydson Henrique Brito da Silva\",\"doi\":\"10.1016/j.cjph.2025.02.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermodynamic analyses of dark energy as a relativistic fluid indicates that this intriguing component of the universe mimics a bulk viscous pressure when the parameter of its barotropic equation of state varies with time. Since in cosmology bulk viscosity and creation or destruction of matter are closely linked processes, we propose in this work a brief thermodynamic study of dark energy considering that particles can be created or destroyed in the fluid. We derive new expressions for quantities such as particle density, entropy density etc. that have been shown to be sensitive to this new ingredient. We also obtain new thermodynamic constraints and compare them with those where the number of particles is conserved. In particular, we found that in the presence of a sink, dark energy tends towards the cosmological constant over time regardless of the sign of its chemical potential and without violating the laws of thermodynamics.</div></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":\"94 \",\"pages\":\"Pages 684-689\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907325000528\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325000528","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对暗能量作为一种相对论性流体的热力学分析表明,当其正压状态方程的参数随时间变化时,宇宙中这一有趣的组成部分模拟了一种体粘性压力。由于在宇宙学中,体积粘度和物质的产生或毁灭是密切相关的过程,我们在这项工作中提出了一个关于暗能量的简要热力学研究,考虑到粒子可以在流体中产生或毁灭。我们推导出新的量的表达式,如粒子密度,熵密度等,已被证明是敏感的这种新的成分。我们还得到了新的热力学约束,并将它们与粒子数守恒的约束进行了比较。特别是,我们发现,在存在汇的情况下,随着时间的推移,暗能量倾向于宇宙常数,而不管它的化学势的符号是什么,也不会违反热力学定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A thermodynamic model for dark energy including particle creation or destruction processes

A thermodynamic model for dark energy including particle creation or destruction processes
Thermodynamic analyses of dark energy as a relativistic fluid indicates that this intriguing component of the universe mimics a bulk viscous pressure when the parameter of its barotropic equation of state varies with time. Since in cosmology bulk viscosity and creation or destruction of matter are closely linked processes, we propose in this work a brief thermodynamic study of dark energy considering that particles can be created or destroyed in the fluid. We derive new expressions for quantities such as particle density, entropy density etc. that have been shown to be sensitive to this new ingredient. We also obtain new thermodynamic constraints and compare them with those where the number of particles is conserved. In particular, we found that in the presence of a sink, dark energy tends towards the cosmological constant over time regardless of the sign of its chemical potential and without violating the laws of thermodynamics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信