波导中求解麦克斯韦方程组的非反射边界条件

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Denise Aregba-Driollet , Patrick Lacoste , Corentin Prigent
{"title":"波导中求解麦克斯韦方程组的非反射边界条件","authors":"Denise Aregba-Driollet ,&nbsp;Patrick Lacoste ,&nbsp;Corentin Prigent","doi":"10.1016/j.cam.2025.116598","DOIUrl":null,"url":null,"abstract":"<div><div>We present here a method for solving the electromagnetic wave–matter interaction, on the one hand in closed waveguides, single or multi-port, and on the other hand with infinite materials periodic in two directions. In this presentation, the guides are coaxial or rectangular, but extension to any regular guide section is straightforward. This paper presents a method for solving Maxwell’s equations in real or virtual waveguides, using a decomposition of the DtN operator, and also introduces an adapted basis of the solution space based on a variational formulation. Finally, 2D axisymmetric and 3D finite elements are used. The text presents a number of resolutions of guided plane-wave scattering problems in a material, confirming the validity of the method and its generality.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"466 ","pages":"Article 116598"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-reflecting boundary conditions for solving Maxwell’s equations in waveguides\",\"authors\":\"Denise Aregba-Driollet ,&nbsp;Patrick Lacoste ,&nbsp;Corentin Prigent\",\"doi\":\"10.1016/j.cam.2025.116598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present here a method for solving the electromagnetic wave–matter interaction, on the one hand in closed waveguides, single or multi-port, and on the other hand with infinite materials periodic in two directions. In this presentation, the guides are coaxial or rectangular, but extension to any regular guide section is straightforward. This paper presents a method for solving Maxwell’s equations in real or virtual waveguides, using a decomposition of the DtN operator, and also introduces an adapted basis of the solution space based on a variational formulation. Finally, 2D axisymmetric and 3D finite elements are used. The text presents a number of resolutions of guided plane-wave scattering problems in a material, confirming the validity of the method and its generality.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"466 \",\"pages\":\"Article 116598\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037704272500113X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037704272500113X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种求解电磁波-物质相互作用的方法,一方面是在封闭波导中,单或多端口中,另一方面是在两个方向上无限周期的材料中。在本演示中,导线是同轴或矩形的,但扩展到任何规则导线部分是直接的。本文提出了一种利用DtN算子的分解在实波导或虚波导中求解麦克斯韦方程组的方法,并介绍了一种基于变分公式的求解空间的自适应基。最后,采用二维轴对称有限元和三维有限元。本文给出了若干材料中导平面波散射问题的解法,证实了该方法的有效性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-reflecting boundary conditions for solving Maxwell’s equations in waveguides
We present here a method for solving the electromagnetic wave–matter interaction, on the one hand in closed waveguides, single or multi-port, and on the other hand with infinite materials periodic in two directions. In this presentation, the guides are coaxial or rectangular, but extension to any regular guide section is straightforward. This paper presents a method for solving Maxwell’s equations in real or virtual waveguides, using a decomposition of the DtN operator, and also introduces an adapted basis of the solution space based on a variational formulation. Finally, 2D axisymmetric and 3D finite elements are used. The text presents a number of resolutions of guided plane-wave scattering problems in a material, confirming the validity of the method and its generality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信