利用各种机器学习方法对偶偶核中的电四极跃迁进行先进的预测建模

IF 2.5 4区 物理与天体物理 Q2 PHYSICS, NUCLEAR
Sihem Berbache , Serkan Akkoyun , Ahmed H. Ali , Sebahattin Kartal
{"title":"利用各种机器学习方法对偶偶核中的电四极跃迁进行先进的预测建模","authors":"Sihem Berbache ,&nbsp;Serkan Akkoyun ,&nbsp;Ahmed H. Ali ,&nbsp;Sebahattin Kartal","doi":"10.1016/j.nuclphysa.2025.123058","DOIUrl":null,"url":null,"abstract":"<div><div>Empirical predictions of electric quadrupole transition probabilities, B (E2; 0⁺→2⁺), in even-even nuclei, are among the principles needed to solve the nuclear structure and collective behaviour. In this study, nine different ML algorithms, gradient boosting machine (GBM), random forest (RF), convolutional neural network (CNN), k-nearest neighbour (KNN), CatBoost, extreme gradient boosting (XGBoost), neural network (NN), support vector machine (SVM) and multiple linear regression (MLR), are evaluated as a different data-driven solution for the prediction of B(E2) values. The outcomes show that ensemble models, in particular GBMs, RF, and XGBoost, provide vastly improved predictive capabilities and generalizing influence while creating strong correlations to experimental data with small prediction errors. On the other hand, deep learning models such as CNN and NN is prone to overfitting, while simpler ones such as MLR and KNN fail to capture the non-linear relationships inherent in nuclear data. The findings underscore the promise of ensemble ML tools for nuclear physics in a scalable, accurate approach for predicting transition probabilities.</div></div>","PeriodicalId":19246,"journal":{"name":"Nuclear Physics A","volume":"1058 ","pages":"Article 123058"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced predictive modelling of electric quadrupole transitions in even-even nuclei using various machine learning approaches\",\"authors\":\"Sihem Berbache ,&nbsp;Serkan Akkoyun ,&nbsp;Ahmed H. Ali ,&nbsp;Sebahattin Kartal\",\"doi\":\"10.1016/j.nuclphysa.2025.123058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Empirical predictions of electric quadrupole transition probabilities, B (E2; 0⁺→2⁺), in even-even nuclei, are among the principles needed to solve the nuclear structure and collective behaviour. In this study, nine different ML algorithms, gradient boosting machine (GBM), random forest (RF), convolutional neural network (CNN), k-nearest neighbour (KNN), CatBoost, extreme gradient boosting (XGBoost), neural network (NN), support vector machine (SVM) and multiple linear regression (MLR), are evaluated as a different data-driven solution for the prediction of B(E2) values. The outcomes show that ensemble models, in particular GBMs, RF, and XGBoost, provide vastly improved predictive capabilities and generalizing influence while creating strong correlations to experimental data with small prediction errors. On the other hand, deep learning models such as CNN and NN is prone to overfitting, while simpler ones such as MLR and KNN fail to capture the non-linear relationships inherent in nuclear data. The findings underscore the promise of ensemble ML tools for nuclear physics in a scalable, accurate approach for predicting transition probabilities.</div></div>\",\"PeriodicalId\":19246,\"journal\":{\"name\":\"Nuclear Physics A\",\"volume\":\"1058 \",\"pages\":\"Article 123058\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Physics A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375947425000442\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375947425000442","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

电四极跃迁概率的经验预测,B (E2);0 +→2 +)在偶偶核中,是解决核结构和集体行为所需的原理之一。在这项研究中,九种不同的机器学习算法,梯度增强机(GBM)、随机森林(RF)、卷积神经网络(CNN)、k近邻(KNN)、CatBoost、极端梯度增强(XGBoost)、神经网络(NN)、支持向量机(SVM)和多元线性回归(MLR),被评估为不同的数据驱动解决方案,用于预测B(E2)值。结果表明,集成模型,特别是GBMs、RF和XGBoost,提供了极大改进的预测能力和泛化影响,同时与实验数据建立了强相关性,预测误差小。另一方面,CNN和NN等深度学习模型容易出现过拟合,而MLR和KNN等较简单的模型则无法捕捉到核数据中固有的非线性关系。这些发现强调了核物理集成ML工具在预测跃迁概率的可扩展、准确方法中的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced predictive modelling of electric quadrupole transitions in even-even nuclei using various machine learning approaches
Empirical predictions of electric quadrupole transition probabilities, B (E2; 0⁺→2⁺), in even-even nuclei, are among the principles needed to solve the nuclear structure and collective behaviour. In this study, nine different ML algorithms, gradient boosting machine (GBM), random forest (RF), convolutional neural network (CNN), k-nearest neighbour (KNN), CatBoost, extreme gradient boosting (XGBoost), neural network (NN), support vector machine (SVM) and multiple linear regression (MLR), are evaluated as a different data-driven solution for the prediction of B(E2) values. The outcomes show that ensemble models, in particular GBMs, RF, and XGBoost, provide vastly improved predictive capabilities and generalizing influence while creating strong correlations to experimental data with small prediction errors. On the other hand, deep learning models such as CNN and NN is prone to overfitting, while simpler ones such as MLR and KNN fail to capture the non-linear relationships inherent in nuclear data. The findings underscore the promise of ensemble ML tools for nuclear physics in a scalable, accurate approach for predicting transition probabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nuclear Physics A
Nuclear Physics A 物理-物理:核物理
CiteScore
3.60
自引率
7.10%
发文量
113
审稿时长
61 days
期刊介绍: Nuclear Physics A focuses on the domain of nuclear and hadronic physics and includes the following subsections: Nuclear Structure and Dynamics; Intermediate and High Energy Heavy Ion Physics; Hadronic Physics; Electromagnetic and Weak Interactions; Nuclear Astrophysics. The emphasis is on original research papers. A number of carefully selected and reviewed conference proceedings are published as an integral part of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信