无需对新类进行微调的增量少量实例分割

IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Luofeng Zhang, Libo Weng, Yuanming Zhang, Fei Gao
{"title":"无需对新类进行微调的增量少量实例分割","authors":"Luofeng Zhang,&nbsp;Libo Weng,&nbsp;Yuanming Zhang,&nbsp;Fei Gao","doi":"10.1016/j.cviu.2025.104323","DOIUrl":null,"url":null,"abstract":"<div><div>Many current incremental few-shot object detection and instance segmentation methods necessitate fine-tuning on novel classes, which presents difficulties when training newly emerged classes on devices with limited computational power. In this paper, a finetune-free incremental few-shot instance segmentation method is proposed. Firstly, a novel weight generator (NWG) is proposed to map the embeddings of novel classes to their respective true centers. Then, the limitations of cosine similarity on novel classes with few samples are analyzed, and a simple yet effective improvement called the piecewise function for similarity calculation (PFSC) is proposed. Lastly, a probability dependency method (PD) is designed to mitigate the impact on the performance of base classes after registering novel classes. The comparative experimental results show that the proposed model outperforms existing finetune-free methods much more on MS COCO and VOC datasets, and registration of novel classes has almost no negative impact on the base classes. Therefore, the model exhibits excellent performance and the proposed finetune-free idea enables it to learn novel classes directly through inference on devices with limited computational power.</div></div>","PeriodicalId":50633,"journal":{"name":"Computer Vision and Image Understanding","volume":"254 ","pages":"Article 104323"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incremental few-shot instance segmentation without fine-tuning on novel classes\",\"authors\":\"Luofeng Zhang,&nbsp;Libo Weng,&nbsp;Yuanming Zhang,&nbsp;Fei Gao\",\"doi\":\"10.1016/j.cviu.2025.104323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many current incremental few-shot object detection and instance segmentation methods necessitate fine-tuning on novel classes, which presents difficulties when training newly emerged classes on devices with limited computational power. In this paper, a finetune-free incremental few-shot instance segmentation method is proposed. Firstly, a novel weight generator (NWG) is proposed to map the embeddings of novel classes to their respective true centers. Then, the limitations of cosine similarity on novel classes with few samples are analyzed, and a simple yet effective improvement called the piecewise function for similarity calculation (PFSC) is proposed. Lastly, a probability dependency method (PD) is designed to mitigate the impact on the performance of base classes after registering novel classes. The comparative experimental results show that the proposed model outperforms existing finetune-free methods much more on MS COCO and VOC datasets, and registration of novel classes has almost no negative impact on the base classes. Therefore, the model exhibits excellent performance and the proposed finetune-free idea enables it to learn novel classes directly through inference on devices with limited computational power.</div></div>\",\"PeriodicalId\":50633,\"journal\":{\"name\":\"Computer Vision and Image Understanding\",\"volume\":\"254 \",\"pages\":\"Article 104323\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Vision and Image Understanding\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077314225000463\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Vision and Image Understanding","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077314225000463","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

当前许多增量式的少量目标检测和实例分割方法都需要对新类进行微调,这给在计算能力有限的设备上训练新出现的类带来了困难。本文提出了一种不需要微调的增量少镜头实例分割方法。首先,提出了一种新的权值生成器(NWG),将新类的嵌入映射到它们各自的真中心。然后,分析了余弦相似度在样本较少的新类上的局限性,提出了一种简单而有效的改进方法——分段相似度计算函数(PFSC)。最后,设计了一种概率依赖方法(PD)来减轻注册新类对基类性能的影响。对比实验结果表明,该模型在MS COCO和VOC数据集上的性能明显优于现有的无微调方法,并且新类的注册对基类几乎没有负面影响。因此,该模型表现出优异的性能,并且所提出的无微调思想使其能够直接通过在计算能力有限的设备上进行推理来学习新的类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Incremental few-shot instance segmentation without fine-tuning on novel classes

Incremental few-shot instance segmentation without fine-tuning on novel classes
Many current incremental few-shot object detection and instance segmentation methods necessitate fine-tuning on novel classes, which presents difficulties when training newly emerged classes on devices with limited computational power. In this paper, a finetune-free incremental few-shot instance segmentation method is proposed. Firstly, a novel weight generator (NWG) is proposed to map the embeddings of novel classes to their respective true centers. Then, the limitations of cosine similarity on novel classes with few samples are analyzed, and a simple yet effective improvement called the piecewise function for similarity calculation (PFSC) is proposed. Lastly, a probability dependency method (PD) is designed to mitigate the impact on the performance of base classes after registering novel classes. The comparative experimental results show that the proposed model outperforms existing finetune-free methods much more on MS COCO and VOC datasets, and registration of novel classes has almost no negative impact on the base classes. Therefore, the model exhibits excellent performance and the proposed finetune-free idea enables it to learn novel classes directly through inference on devices with limited computational power.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computer Vision and Image Understanding
Computer Vision and Image Understanding 工程技术-工程:电子与电气
CiteScore
7.80
自引率
4.40%
发文量
112
审稿时长
79 days
期刊介绍: The central focus of this journal is the computer analysis of pictorial information. Computer Vision and Image Understanding publishes papers covering all aspects of image analysis from the low-level, iconic processes of early vision to the high-level, symbolic processes of recognition and interpretation. A wide range of topics in the image understanding area is covered, including papers offering insights that differ from predominant views. Research Areas Include: • Theory • Early vision • Data structures and representations • Shape • Range • Motion • Matching and recognition • Architecture and languages • Vision systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信