基于Galerkin/最小二乘稳定的平流扩散方程的时空有限元分析

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Biswajit Khara , Kumar Saurabh , Robert Dyja , Anupam Sharma , Baskar Ganapathysubramanian
{"title":"基于Galerkin/最小二乘稳定的平流扩散方程的时空有限元分析","authors":"Biswajit Khara ,&nbsp;Kumar Saurabh ,&nbsp;Robert Dyja ,&nbsp;Anupam Sharma ,&nbsp;Baskar Ganapathysubramanian","doi":"10.1016/j.camwa.2025.02.020","DOIUrl":null,"url":null,"abstract":"<div><div>We present a full space-time numerical solution of the advection-diffusion equation using a continuous Galerkin finite element method on conforming meshes. The Galerkin/least-square method is employed to ensure stability of the discrete variational problem. In the full space-time formulation, time is considered another dimension, and the time derivative is interpreted as an additional advection term of the field variable. We derive <em>a priori</em> error estimates and illustrate spatio-temporal convergence with several numerical examples. We also derive <em>a posteriori</em> error estimates, which coupled with adaptive space-time mesh refinement provide efficient and accurate solutions. The accuracy of the space-time solutions is illustrated by comparing against analytical solutions as well as against numerical solutions using a conventional time-marching algorithm.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"185 ","pages":"Pages 52-75"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space-time finite element analysis of the advection-diffusion equation using Galerkin/least-square stabilization\",\"authors\":\"Biswajit Khara ,&nbsp;Kumar Saurabh ,&nbsp;Robert Dyja ,&nbsp;Anupam Sharma ,&nbsp;Baskar Ganapathysubramanian\",\"doi\":\"10.1016/j.camwa.2025.02.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a full space-time numerical solution of the advection-diffusion equation using a continuous Galerkin finite element method on conforming meshes. The Galerkin/least-square method is employed to ensure stability of the discrete variational problem. In the full space-time formulation, time is considered another dimension, and the time derivative is interpreted as an additional advection term of the field variable. We derive <em>a priori</em> error estimates and illustrate spatio-temporal convergence with several numerical examples. We also derive <em>a posteriori</em> error estimates, which coupled with adaptive space-time mesh refinement provide efficient and accurate solutions. The accuracy of the space-time solutions is illustrated by comparing against analytical solutions as well as against numerical solutions using a conventional time-marching algorithm.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"185 \",\"pages\":\"Pages 52-75\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125000793\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125000793","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文用连续伽辽金有限元法在一致网格上给出了平流扩散方程的全时空数值解。采用伽辽金/最小二乘法来保证离散变分问题的稳定性。在完整的时空公式中,时间被认为是另一个维度,时间导数被解释为场变量的附加平流项。我们推导了先验误差估计,并通过几个数值例子说明了时空收敛性。我们还推导了一种后验误差估计,该估计与自适应时空网格细化相结合,提供了高效准确的解。通过与解析解和使用传统时间推进算法的数值解的比较,说明了时空解的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space-time finite element analysis of the advection-diffusion equation using Galerkin/least-square stabilization
We present a full space-time numerical solution of the advection-diffusion equation using a continuous Galerkin finite element method on conforming meshes. The Galerkin/least-square method is employed to ensure stability of the discrete variational problem. In the full space-time formulation, time is considered another dimension, and the time derivative is interpreted as an additional advection term of the field variable. We derive a priori error estimates and illustrate spatio-temporal convergence with several numerical examples. We also derive a posteriori error estimates, which coupled with adaptive space-time mesh refinement provide efficient and accurate solutions. The accuracy of the space-time solutions is illustrated by comparing against analytical solutions as well as against numerical solutions using a conventional time-marching algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信