Shuting Wang, Fuqi Lu, Wenhui Guan, Zhongyuan You, Bin Liao, Meidong Huang, Yunliang Li, Weihai Fang and Ying Liu
{"title":"从衣服中收集能量","authors":"Shuting Wang, Fuqi Lu, Wenhui Guan, Zhongyuan You, Bin Liao, Meidong Huang, Yunliang Li, Weihai Fang and Ying Liu","doi":"10.1039/D4NR03719G","DOIUrl":null,"url":null,"abstract":"<p >Seeking new energy sources, especially those with less environmental impact, has been a consistent effort in the field of energy harvesting. In this work, we present an innovative energy harvesting technique for collecting energy from clothing. In this convenient but powerful method, electrical energy is generated by simply sliding a zein film assembly on the surface of clothes by constructing zein/cloth direct current (DC) triboelectric nanogenerators (TENGs). These TENGs contain only one electrode, which is connected to the zein assembly, leaving the cloth electrode free. Therefore, the clothes avoid any modification or tailoring, allowing for typical washing after separating the zein. Upon testing many ordinary clothing made with typical fabrics, the proposed zein/cloth TENGs worked efficiently with the most studied fabrics. The zein/cloth DC TENGs could generate electrical signals with an output performance of <em>V</em> = 23.45 V and <em>I</em> = 113.12 nA, making it capable of easily powering at least 10 LED lights simultaneously. Thus, our pioneer work provides a promising method for designing a portable ultra-light nano-energy generator that can harvest energy for small electrical power demands using the simple friction between clothes and the flexible zein assembly, irrespective of the location and time. This technique damages the clothing only negligibly and extricates energy harvesting from environmental constraints, such as sunlight and wind.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 13","pages":" 7986-7996"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy harvesting from clothing†\",\"authors\":\"Shuting Wang, Fuqi Lu, Wenhui Guan, Zhongyuan You, Bin Liao, Meidong Huang, Yunliang Li, Weihai Fang and Ying Liu\",\"doi\":\"10.1039/D4NR03719G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Seeking new energy sources, especially those with less environmental impact, has been a consistent effort in the field of energy harvesting. In this work, we present an innovative energy harvesting technique for collecting energy from clothing. In this convenient but powerful method, electrical energy is generated by simply sliding a zein film assembly on the surface of clothes by constructing zein/cloth direct current (DC) triboelectric nanogenerators (TENGs). These TENGs contain only one electrode, which is connected to the zein assembly, leaving the cloth electrode free. Therefore, the clothes avoid any modification or tailoring, allowing for typical washing after separating the zein. Upon testing many ordinary clothing made with typical fabrics, the proposed zein/cloth TENGs worked efficiently with the most studied fabrics. The zein/cloth DC TENGs could generate electrical signals with an output performance of <em>V</em> = 23.45 V and <em>I</em> = 113.12 nA, making it capable of easily powering at least 10 LED lights simultaneously. Thus, our pioneer work provides a promising method for designing a portable ultra-light nano-energy generator that can harvest energy for small electrical power demands using the simple friction between clothes and the flexible zein assembly, irrespective of the location and time. This technique damages the clothing only negligibly and extricates energy harvesting from environmental constraints, such as sunlight and wind.</p>\",\"PeriodicalId\":92,\"journal\":{\"name\":\"Nanoscale\",\"volume\":\" 13\",\"pages\":\" 7986-7996\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr03719g\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr03719g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Seeking new energy sources, especially those with less environmental impact, has been a consistent effort in the field of energy harvesting. In this work, we present an innovative energy harvesting technique for collecting energy from clothing. In this convenient but powerful method, electrical energy is generated by simply sliding a zein film assembly on the surface of clothes by constructing zein/cloth direct current (DC) triboelectric nanogenerators (TENGs). These TENGs contain only one electrode, which is connected to the zein assembly, leaving the cloth electrode free. Therefore, the clothes avoid any modification or tailoring, allowing for typical washing after separating the zein. Upon testing many ordinary clothing made with typical fabrics, the proposed zein/cloth TENGs worked efficiently with the most studied fabrics. The zein/cloth DC TENGs could generate electrical signals with an output performance of V = 23.45 V and I = 113.12 nA, making it capable of easily powering at least 10 LED lights simultaneously. Thus, our pioneer work provides a promising method for designing a portable ultra-light nano-energy generator that can harvest energy for small electrical power demands using the simple friction between clothes and the flexible zein assembly, irrespective of the location and time. This technique damages the clothing only negligibly and extricates energy harvesting from environmental constraints, such as sunlight and wind.
期刊介绍:
Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.