利用双模板效应构建类石墨烯层状碳催化剂用于高效类芬顿反应

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-02-28 DOI:10.1021/acsnano.4c18558
Tingting Lian, Yang Wang, Jin-Lin Yang, Markus Antonietti
{"title":"利用双模板效应构建类石墨烯层状碳催化剂用于高效类芬顿反应","authors":"Tingting Lian, Yang Wang, Jin-Lin Yang, Markus Antonietti","doi":"10.1021/acsnano.4c18558","DOIUrl":null,"url":null,"abstract":"Two-dimensional (2D) carbon materials are receiving increasing attention due to their partly groundbreaking performance in catalysis and electrochemistry based on distinct physiochemical and textural properties. We focus on the challenge to directly achieve a well-developed layered morphology with a high doping level of heteroatoms as the active sites, a standard conflict of interests of high-temperature synthesis. Here, we report a dual-templating strategy to yield graphene-like layered carbon (GLC) by direct carbonization of a texturally prealigned zeolitic imidazolate framework-8 (ZIF-8). The recrystallization of ZIF-8 in an aqueous NaCl solution discloses a 2D packing mode that was retained after freeze-drying with recrystallized NaCl as an exotemplate and a space-confining nanoreactor. Further promoted by the chemical interaction of NaCl in promoting and stabilizing the carbonization process, the final product came with a well-separated layered morphology and high amounts of heteroatoms (16.6 wt % N and 7.5 wt % O). The structurally and catalytically special GLC functioned well in activating peroxymonosulfate-based Fenton-like reactions. It was shown that the reaction proceeded via nonfree-radical-mediated pathways, as reflected in significantly enhanced electron-transfer processes and ultrafast kinetics for pollutant removal. The proposed strategy is expected to afford a broader applicability for the bottom-up design of 2D carbon materials.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"30 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing a Graphene-like Layered Carbocatalyst by the Dual Templating Effect for an Efficient Fenton-like Reaction\",\"authors\":\"Tingting Lian, Yang Wang, Jin-Lin Yang, Markus Antonietti\",\"doi\":\"10.1021/acsnano.4c18558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional (2D) carbon materials are receiving increasing attention due to their partly groundbreaking performance in catalysis and electrochemistry based on distinct physiochemical and textural properties. We focus on the challenge to directly achieve a well-developed layered morphology with a high doping level of heteroatoms as the active sites, a standard conflict of interests of high-temperature synthesis. Here, we report a dual-templating strategy to yield graphene-like layered carbon (GLC) by direct carbonization of a texturally prealigned zeolitic imidazolate framework-8 (ZIF-8). The recrystallization of ZIF-8 in an aqueous NaCl solution discloses a 2D packing mode that was retained after freeze-drying with recrystallized NaCl as an exotemplate and a space-confining nanoreactor. Further promoted by the chemical interaction of NaCl in promoting and stabilizing the carbonization process, the final product came with a well-separated layered morphology and high amounts of heteroatoms (16.6 wt % N and 7.5 wt % O). The structurally and catalytically special GLC functioned well in activating peroxymonosulfate-based Fenton-like reactions. It was shown that the reaction proceeded via nonfree-radical-mediated pathways, as reflected in significantly enhanced electron-transfer processes and ultrafast kinetics for pollutant removal. The proposed strategy is expected to afford a broader applicability for the bottom-up design of 2D carbon materials.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c18558\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18558","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维(2D)碳材料基于其独特的物理化学和结构特性,在催化和电化学方面具有开创性的性能,因此受到越来越多的关注。我们关注的挑战是直接实现具有高掺杂水平的杂原子作为活性位点的发育良好的层状形貌,这是高温合成的标准利益冲突。在这里,我们报告了一种双模板策略,通过直接碳化结构预先排列的沸石咪唑盐框架-8 (ZIF-8)来生产类石墨烯层状碳(GLC)。ZIF-8在NaCl水溶液中的再结晶揭示了以再结晶的NaCl作为外模板和空间约束纳米反应器冷冻干燥后保留的二维包装模式。在NaCl的化学相互作用下,进一步促进和稳定了炭化过程,最终产物具有分离良好的层状形貌和大量的杂原子(16.6 wt % N和7.5 wt % O)。结构和催化上特殊的GLC在激活过氧单硫酸盐类芬顿反应中发挥了良好的作用。结果表明,该反应是通过非自由基介导的途径进行的,这反映在显著增强的电子转移过程和污染物去除的超快动力学中。所提出的策略有望为二维碳材料的自下而上设计提供更广泛的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Constructing a Graphene-like Layered Carbocatalyst by the Dual Templating Effect for an Efficient Fenton-like Reaction

Constructing a Graphene-like Layered Carbocatalyst by the Dual Templating Effect for an Efficient Fenton-like Reaction
Two-dimensional (2D) carbon materials are receiving increasing attention due to their partly groundbreaking performance in catalysis and electrochemistry based on distinct physiochemical and textural properties. We focus on the challenge to directly achieve a well-developed layered morphology with a high doping level of heteroatoms as the active sites, a standard conflict of interests of high-temperature synthesis. Here, we report a dual-templating strategy to yield graphene-like layered carbon (GLC) by direct carbonization of a texturally prealigned zeolitic imidazolate framework-8 (ZIF-8). The recrystallization of ZIF-8 in an aqueous NaCl solution discloses a 2D packing mode that was retained after freeze-drying with recrystallized NaCl as an exotemplate and a space-confining nanoreactor. Further promoted by the chemical interaction of NaCl in promoting and stabilizing the carbonization process, the final product came with a well-separated layered morphology and high amounts of heteroatoms (16.6 wt % N and 7.5 wt % O). The structurally and catalytically special GLC functioned well in activating peroxymonosulfate-based Fenton-like reactions. It was shown that the reaction proceeded via nonfree-radical-mediated pathways, as reflected in significantly enhanced electron-transfer processes and ultrafast kinetics for pollutant removal. The proposed strategy is expected to afford a broader applicability for the bottom-up design of 2D carbon materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信