Yingfeng Shi, Yan Hu, Jinqing Li, Hui Chen, Qin Zhong, Xiaoyan Ma, Xialin Li, Shasha Zhang, Shougang Zhuang, Na Liu
{"title":"抑制Caspase-1抑制gsdmd介导的腹膜间皮细胞焦亡和腹膜纤维化炎症","authors":"Yingfeng Shi, Yan Hu, Jinqing Li, Hui Chen, Qin Zhong, Xiaoyan Ma, Xialin Li, Shasha Zhang, Shougang Zhuang, Na Liu","doi":"10.1002/smll.202409362","DOIUrl":null,"url":null,"abstract":"<p>Pyroptosis, belonging to programmed cell death, is shown to be mediated by gasdermin D (GSDMD) and gains more and more attention in innate immunity and multiple diseases. However, the role of GSDMD-mediated pyroptosis in peritoneal fibrosis (PF) remains unclear. This study observed NLRP3 inflammasome activation and pyroptosis in the peritoneum of long-term peritoneal dialysis (PD) patients with PF. Moreover, it is found that high glucose (HG) can induce the activation of NLRP3 inflammasome by regulating TLR4/NF-κB and JNK/p38 MAPK signaling in human peritoneal mesothelial cells (HPMCs), leading to subsequent Caspase-1 activation. The cleaved Caspase-1 promoted pyroptosis-related transmembrane pore formation through activating GSDMD-N, and stimulated the HPMCs to secrete inflammatory factors including IL-1β and IL-18. GSDMD global deletion or pharmacologic pretreatment with Caspase-1 specific inhibitor VX-765 effectively inhibited the pyroptosis and inflammation, thereby ameliorating PF. Additionally, treatment with VX-765 and transfected with Caspase-1 siRNA or GSDMD siRNA also inhibited the transmembrane pore formation and inflammatory factors secretion in HG-induced HPMCs. Consistent with these results, delayed treatment with VX-765 also alleviated PF, indicating the therapeutic effect of VX-765. Taken together, the results demonstrate that pyroptosis may be a novel therapeutic target for peritoneal fibrosis.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 14","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of Caspase-1 Suppresses GSDMD-mediated Peritoneal Mesothelial Cell Pyroptosis and Inflammation in Peritoneal Fibrosis\",\"authors\":\"Yingfeng Shi, Yan Hu, Jinqing Li, Hui Chen, Qin Zhong, Xiaoyan Ma, Xialin Li, Shasha Zhang, Shougang Zhuang, Na Liu\",\"doi\":\"10.1002/smll.202409362\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pyroptosis, belonging to programmed cell death, is shown to be mediated by gasdermin D (GSDMD) and gains more and more attention in innate immunity and multiple diseases. However, the role of GSDMD-mediated pyroptosis in peritoneal fibrosis (PF) remains unclear. This study observed NLRP3 inflammasome activation and pyroptosis in the peritoneum of long-term peritoneal dialysis (PD) patients with PF. Moreover, it is found that high glucose (HG) can induce the activation of NLRP3 inflammasome by regulating TLR4/NF-κB and JNK/p38 MAPK signaling in human peritoneal mesothelial cells (HPMCs), leading to subsequent Caspase-1 activation. The cleaved Caspase-1 promoted pyroptosis-related transmembrane pore formation through activating GSDMD-N, and stimulated the HPMCs to secrete inflammatory factors including IL-1β and IL-18. GSDMD global deletion or pharmacologic pretreatment with Caspase-1 specific inhibitor VX-765 effectively inhibited the pyroptosis and inflammation, thereby ameliorating PF. Additionally, treatment with VX-765 and transfected with Caspase-1 siRNA or GSDMD siRNA also inhibited the transmembrane pore formation and inflammatory factors secretion in HG-induced HPMCs. Consistent with these results, delayed treatment with VX-765 also alleviated PF, indicating the therapeutic effect of VX-765. Taken together, the results demonstrate that pyroptosis may be a novel therapeutic target for peritoneal fibrosis.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 14\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409362\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202409362","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Inhibition of Caspase-1 Suppresses GSDMD-mediated Peritoneal Mesothelial Cell Pyroptosis and Inflammation in Peritoneal Fibrosis
Pyroptosis, belonging to programmed cell death, is shown to be mediated by gasdermin D (GSDMD) and gains more and more attention in innate immunity and multiple diseases. However, the role of GSDMD-mediated pyroptosis in peritoneal fibrosis (PF) remains unclear. This study observed NLRP3 inflammasome activation and pyroptosis in the peritoneum of long-term peritoneal dialysis (PD) patients with PF. Moreover, it is found that high glucose (HG) can induce the activation of NLRP3 inflammasome by regulating TLR4/NF-κB and JNK/p38 MAPK signaling in human peritoneal mesothelial cells (HPMCs), leading to subsequent Caspase-1 activation. The cleaved Caspase-1 promoted pyroptosis-related transmembrane pore formation through activating GSDMD-N, and stimulated the HPMCs to secrete inflammatory factors including IL-1β and IL-18. GSDMD global deletion or pharmacologic pretreatment with Caspase-1 specific inhibitor VX-765 effectively inhibited the pyroptosis and inflammation, thereby ameliorating PF. Additionally, treatment with VX-765 and transfected with Caspase-1 siRNA or GSDMD siRNA also inhibited the transmembrane pore formation and inflammatory factors secretion in HG-induced HPMCs. Consistent with these results, delayed treatment with VX-765 also alleviated PF, indicating the therapeutic effect of VX-765. Taken together, the results demonstrate that pyroptosis may be a novel therapeutic target for peritoneal fibrosis.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.